SystemVerilog
5———/

SystemVerilog 3.1a
Language Reference Manual

Accellera’s Extensions to Verilog®

Abstract: a set of extensions to the IEEE 1364-2001 Verilog Hardware Description Language to aid
in the creation and verification of abstract architectural level models

SystemVerilog 3.1a (5/13/04)

SystemVerilog
‘——"/

SystemVerilog 3.1a
Language Reference Manual

Accellera’s Extensions to Verilog®

Abstract: a set of extensions to the IEEE 1364-2001 Verilog Hardware Description Language to aid
in the creation and verification of abstract architectural level models

acecellera

Copyright © 2002, 2003, 2004 by Accellera Organization, Inc.
1370 Trancas Street #163

Napa, CA 94558

Phone: (707) 251-9977

Fax: (707) 251-9877

All rights reserved. No part of this document may be reproduced or distributed in any medium what-
soever to any third parties without prior written consent of Accellera Organization, Inc.

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Verilog isaregistered trademark of Cadence Design Systems, San Jose, CA

ii Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

STATEMENT OF USE
OF ACCELLERA STANDARDS

Accellera Standards documents are developed within Accellera and the Technical Committees of Accellera
Organization, Inc. Accellera develops its standards through a consensus development process, approved by its
members and board of directors, which brings together volunteers representing varied viewpoints and interests
to achieve thefinal product. Volunteers are not necessarily members of Accelleraand serve without compensa-
tion. While Accellera administers the process and establishes rules to promote fairness in the consensus devel-
opment process, Accellera does not independently evaluate, test, or verify the accuracy of any of the
information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, prop-
erty or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory,
directly or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Stan-
dard document.

Accelleradoes not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for
a specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera
Standards documents are supplied “ASIS”.

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Standard. Further-
more, the viewpoint expressed at the time a standard is approved and issued is subject to change due to devel-
opments in the state of the art and comments received from users of the standard. Every Accellera Standard is
subjected to review periodically for revision and update. Users are cautioned to check to determine that they
have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other servicesfor, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed
by any other person or entity to another. Any person utilizing this, and any other Accellera Standards docu-
ment, should rely upon the advice of a competent professional in determining the exercise of reasonable carein
any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate
to specific applications. When the need for interpretations is brought to the attention of Accellera, Accellera
will initiate action to prepare appropriate responses. Since Accellera Standards represent a consensus of con-
cerned interests, it isimportant to ensure that any interpretation has also received the concurrence of abalance
of interests. For this reason, Accelleraand the members of its Technical Committees are not able to provide an
instant response to interpretation requests except in those cases where the matter has previously received for-
mal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of member-
ship affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed
change of text, together with appropriate supporting comments. Comments on standards and requests for inter-
pretations should be addressed to:

Accellera Organization
1370 Trancas Street #163
Napa, CA 94558

USA

Copyright 2004 Accellera. All rights reserved. iii

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Note: Attention is called to the possibility that implementation of this standard may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. Accellera shall not be responsible for
identifying patents for which alicense may be required by an Accellera standard or for conducting inquir-
iesinto the legal validity or scope of those patents that are brought to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trade-
marks to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted by
Accellera Organization, Inc., provided that permission is obtained from and any required fee is paid to Accel-
lera. To arrange for authorization please contact Lynn Horobin, Accellera, 1370 Trancas Street #163, Napa,
CA 94558, phone (707) 251-9977, e-mail lynn@accellera.org. Permission to photocopy portions of any indi-
vidual standard for educational classroom use can also be obtained from Accellera.

iv Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Acknowledgements

This SystemVerilog L anguage Reference Manual was devel oped by experts from many different fields, includ-
ing design and verification engineers, Electronic Design Automation (EDA) companies, EDA vendors, and
members of the IEEE 1364 Verilog standard working group.

The SystemVerilog Language Reference Manua (LRM) was specified by the Accellera SystemVerilog com-
mittee. Four subcommittees worked on various aspects of the SystemVerilog 3.1 specification:

— The Basic/Design Committee (SV-BC) worked on errata and extensions to the design features of System-
Verilog 3.1.

— The Enhancement Committee (SV-EC) worked on errata and extensions to the testbench features of Sys-
temVerilog 3.1.

— The Assertions Committee (SV-AC) worked on errata and extensions to the assertion features of System-
Verilog 3.1.

— The C Application Programming Interface (API) Committee (SV-CC) worked on errata and extensions to
the Direct Programming Interface (DPI), the assertions and coverage APIs and the VPI features of System-
Verilog 3.1.

The committee chairs were:
Vassilios Gerousis, SystemVerilog 3.1 and 3.1a Committee General Chair

Basic/Design Committee
Johny Srouji, SystemVerilog 3.1 and 3.1a Chair
Karen Pieper, SystemVerilog 3.1 and 3.1a Co-Chair

Enhancement Committee
David Smith, SystemVerilog 3.1 and 3.1a Chair
Stefen Boyd, SystemVerilog 3.1 Co-Chair
Neil Korpusik, SystemVerilog 3.1a Co-Chair

Assertions Committee
Faisal Hagque, SystemVerilog 3.1 and 3.1a Chair
Steve Meier, SystemVerilog 3.1 Co-Chair
Arif Samad, SystemVerilog 3.1a Co-Chair

C APl Committee
Swapnajit Mittra, SystemVerilog 3.1 and 3.1a Chair
Ghassan Khoory, SystemVerilog 3.1 and 3.1a Co-Chair

Stuart Sutherland, SystemVerilog 3.1 and 3.1a Language Reference Manual Editor
Stefen Boyd, SystemVerilog 3.1 BNF Annex. Editor
Brad Pierce, SystemVerilog 3.1a BNF Annex Editor

Copyright 2004 Accellera. All rights reserved. %

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001

Committee members included (listed alphabetically by last name)

SystemVerilog 3.1/3.1a
Basic/Design Committee

SystemVerilog 3.1/3.1a
Enhancement Committee

SystemVerilog 3.1/3.1a
Assertions Committee

SystemVerilog 3.1/3.1a
C API Committee

Kevin Cameron+
Cliff Cummings* +++
Dan Jacobi+++

Jay Lawrencet+++
Mark Hartoog++
Peter Flake++

Matt Mai dment+++
Francoise Martinolle* +++
Rishiyur Nikhil++
Karen Pieper* +++
Brad Piercet+++
David Rich+++
Steven Sharp* +
Johny Srouji+++
Gord Vreugdenhil* +
Doug Warmke++

Stefen Boyd* +

Dennis Brophy+++
Michael Burns+++
Kevin Cameron+

Cliff Cummings* +++
Peter Flake+

Jeff Freedman+

Neil Korpusik+++

Jay Lawrencet+++
Francoise Martinolle* +
Don Mills+

Mehdi Mohtashemi+++
Phil Moorby+

Karen Pieper*+

Brad Piercet+++

Dave Rich++

Ray Ryan++

Arturo Salz+++

David Smith+++
Stuart Sutherland* +++

Roy Armoni+++
Surrendra Dudani+++
Cindy Eisner+
Harry Foster+

Faisal Haquet+++
John Havlicek+++
Richard Ho+

Adam Krolnik* +++
David Lacey+
Joseph Lu+++

Erich Marschner+
Steve Meier+

Hillel Miller++
Prakash Narain+
Koushik Roy++
Arif Samad++
Andrew Seawright+
Bassam Tabbara+++

John Amouroux+++
Kevin Cameron+++
Ralph Duncan++
Charles Dawson++
Jodo Geadat+++
Ghassan Khoory+++
Andrzej Litwiniuk+++
Avinash Mani++
Francoise Martinole* +++
Swapngjit Mittrat+++
Michael Rohleder+++
John Stickley+++
Stuart Swan+++
Bassam Tabbarat+++
Kurt Takarat+

Doug Warmke+++

* indicates this person was a so an active member of the IEEE 1364 Verilog Standard Working Group
+ indicates this person was actively involved in SystemVerilog 3.1

++ indicates this person was actively involved in SystemVerilog 3.1a

+++ indicates this person was actively involved in SystemVerilog 3.1 and 3.1a

Vi Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Table of Contents

Section 1 INtroduction t0 SYSEEMVEN 1100ccovivierireeiereeseee st ae et e e ese e e e eneas 1
SECHON 2 LITEIal VAIUBS....c.ceeieie ettt ettt b et ae bbbt b e b et e see e e b et et ene e e sneane 4
225 N g 1 oo (0ot o o (T 0 1 = /=) 4
A W) = = 7= 0TS Y o - 4
A I 1911= e (= =010l Fo o T o 11 1= = K 4
24 REA TITEIAIS ..ottt e et b et b et b et b e bbb e b e e e ere s 5
P2 T N1 (] L1 0= = TSRS 5
DA SIS {1 To 11 (== T 5
DA A N 1 - YA 11 = = 6
2.8 SHUCKUIE [ITEIAIS ..ottt st b ettt sttt 6
oo g IR B T 1= 1Y/ 1= TSRS 8
150 M g oo (0ot o (T 0 1 7= V7<) 8
I B T = N 1Y = 9
GG T 1911= 0 (= g0 = v 11 01 10
3.4 Real and Shortreal datatyPEScceveeriereeese s s s e e see e se ettt s se e e e se e e e eneneeneees 11
BT STV oo o = = 4] T 11
IR ST 7= 0 | =0 = v 4 o= 11
I A S {1 gTo o= 2= 1 3 o= 12
TR T V7= o 0 = - Y o= 16
e T U= e =] gc I o1 16
.10 ENUMEIBIIONS ...ttt sttt sttt eb e bttt st e bbb e ettt st st ntene 17
311 SHIUCLUFES BN UNIONS.....c.eitiietireetisietesieeesieee sttt tsse e bbbttt et e e e be e s et e neenesbeneseens 22
TN SRR 26
3.13 Singular and agQregate tYPES......uieirerierierereerieeereeeereseesesresesresteseeseesteseeseeeeseseeneeseenesseeneasessenes 27
T30 R 11 oo [27
3.15 $CASt AYNAMIC CASIING ..vvrverereeeeeerererteeeseeeeteeresete e seseseesesesesesseseneseesesenesessesesesenessesenessssesesssnsnsas 28
TN L ST s 1= g o= o OSSP 29
= ot o] I N g = YT TSRS 32
4.1 Introduction (INFOFMBELIVE)ceieeireeireeere ettt bbb st 32
4.2 Packed and UNPECKEH @ITAYSceiviieeiireeiireeie ettt sttt st sttt st s s se e seene 32
4.3 MUIIPIE AIMENSIONScveuiiiiieiteierie sttt et sttt sttt s se e e se e se et 33
4.4 Indexing and SliCING Of @ITAYS.cco ettt 34
45 Array qUENYING FUNCLIONS........cc.oiiiiire ettt st st st s eebesrene 35
4.6 DYNAIMIC BITAYS .e e iteertererteseetestetesee e see it see e st et se et be st be st beaeebe st ebe st s beseebe st ek e sbebeseeneseeneseeneseenestenentens 35
A N A= A= o 10100 oL ST SRS 37
4.8 AITAYS AS BIGUIMEIIES. ...e.veereeieeesieieeeeseeesse st eressesr st e e se e sese e s et e s e eb e s st ebeeb e nbesae s e s b e e e s e e s s e e e se e e ns e e e 38
4.9 ASSOCIALIVE @ITAYS. . .cueeeueeetereetireete sttt sttt sttt sttt st e st st e st s besesbese et e st et e seebeseeb e e ebeaeebese bt seebesaebesbebesbeneas 39
4.10 AssoCiatiVe array MELNOGS.coiiiierrierrie ettt 41
4,11 ASSOCIAtiVE ATaY @SSIGNMENT.....eeueiieiirieiieieieetee st sttt sttt st se et se et e b seebeseebeseebesaebesaebeseesens 44
4,12 ASSOCIatiVe @Tay arQUMENTS......ccveeieeeereeeeeeteeestesseseeseessesaesseseesessesseesessessessessessessessesemsssseesensessenns 44
B R NS o Lo - (A== - Y L - 44
R 11T 1= S SSP 45
4.15 Array manipulation MELNOGScccvieieriree e e e s e sesresnesresrenseseens 47
SeCtion 5 Data DECIAr GtIONScoui ittt bbbt b b et et e be et ne e 52
5.1 Introduction (iNfFOMMBLIVE)coeiieiriiirieerienese ettt s 52
5.2 DatadeClaralion SYNEAX........curueirieirieiiieerieieseeiesee sttt sttt s bt se e e 52
LG T O L =S 52

Copyright 2004 Accellera. All rights reserved. Vii

Accellera

SystemVerilog 3.1a Extensions to Verilog-2001
B4 VaTADIES ...t 53
LTS wle o L== oo) = (] 1= 54
Lo ST N\ T= FN (=0 TS= 1o I o o o3 55
L A o 1= = = o 56
L3RS T Y/ o =Yoo = 1 o1 58

SECHION B ATLFIDULES ...t nn e 61
1S5 M g oo (0ot o g I (T 0 107 /=) 61
LS D = - W[A= T oL 1= 1Y o= 61

Section 7 OperatorS and EXPrESSIONS........ccovrireriirrrereie s nnens 62
4% R g oo (8ot o g (10 107 /=) 62
A O o 1= = 0] =Y] - G S 62
AT AN = To 101 01= 0100 0 - (0] £ T 62
7.4 Operations on 10giC aNd DIt tYPES ...c.eueeerireeirieeerie ettt e b e eaesae e 63
7.5 Wild equality and Wild iINEQUAITEYceiuiiiieeiece e e 63
A T = 0] 1< = (o= TRURRR 64
A S USRS 64
A= TS o o OO U T SST USSR 64
7.9 Operator precedence and aSSOCIALIVITYcceeereririerierie ettt e b e aeseeeas 64
7.10 BUITt-INMEINOUS ...ttt et ettt bt bbbt se e b et et ebe e e eneenenes 65
T SEALIC PrEFIXES ...ttt ettt b e b ettt b e s b bbb s ae b b e 66
8 A O g o= [= 1o o OSSR 67
7.13 UNPacked array EXPrESSIONScccueerieaerertearertastessesteeeseeeasssseastssessesseasessesesseessessenssnsasesssesessesses 67
A S (o N L= 0 (=S 0] T USSR 68
7.15 Tagged union expressions and MEMDEN @CCESS.........uiiurieriereriereeeereree st se st e e sbesbe e seesee s 70
7.16 AQQrEgate EXPIESSIONSccueiueitieeteeeteueeesueesestesseseesseseeseesasseasataseaesseasesbessesaessessensansassssanessesses 71
7.17 OPErator OVEITOBOINGc.eoveiue ittt ettt et e et sae et be s be e seese e b ene e e ebe e e eneenenes 72
7.18 Streaming operators (PACK / UNPECK)cooiueririiirieneie et sbe s eaesaeeas 73
7.19 CONitiONal OPEIGLOLeiveieeieieeieieeeet ettt et e et sae et st ebesbeseesbeee e b e e e e ebe e e eneenenas 77
FA OIS W 11= 011 1< £ T o T USSR 77

Section 8 Procedural Statementsand COoNtrol FIOW ... 79
8.1 INtroduction (INFOFMBELIVE)cceiueieieerire ettt sttt bbb e e e e se e e eneene e 79
S IS = (= 111 £ F TP U T UUT PR 79
8.3 Blocking and nonblocking aSSIgNMENEScc.ceeiiiiriireeerere et e s 80
8.4 SEECHION SEALEMENTS. ... ettt sttt b et e s bbb et ae et et be s b e sbesbesb e be e e s ebe e e eneenenes 81
8.5 L OOP SLALEIMEIEScutiteeite ettt ettt ettt bbbt ebe e b e e ae e e ae e s e s e et sae e neesaeeaeesaeenb e b e enbesneeseesnnenee 87
8.6 JUMP SLALEIMENLS. ...ttt ettt b et b e st b bt e b s he e se e sae e e e st e b et e e beeneesrennnenee 89
S A T 0 o o 0 TSP 89
8.8 Named blocks and statement [aDEIS.o s Q0
8.9 DUSANIE ...ttt b A b bR bk R e b bR e bt eebnas Q0
o L0 Y= o o] 11 (o) OO 91
8.11 Level-Sensitive SEOUENCE COMLIOISouiiiiieeiieiere sttt sttt et sb et e e e b s e sneeas 93
8.12 Procedural assign and deassign reMOVEcoerereieinierere e 94

SECHION D PrOCESSES. .. cuteueeteeueetestirtestestesestesteseeseaseeseaseasesseasesseseessessessessenseseaseeseaseesesaeseestensesennsensenennsnnennesneens 95
9.1 Introduction (INFOFMBELIVE)cceiueieieeririe ettt sttt be st e et e e ese e e eneenenes 95
9.2 COMDINGLIONEI TOGIC...c..eeverterteitiiesiee ettt ettt sae et e b e b e e e e e b et e e eb e e e eneenenes 95
LS T I o 0= o I o o [o3PS 96
LS S o 1= 0| = oo [T oSSR 96
9.5 CONtINUOUS BSSIGNIMIENLSc.veeiueeuieieeeeueeerieetestesieseestebeseeeesbe e et eae et saeebesbesbesbeseesseneenseneeeeneenenses 96
LS K ST o] G o 1 o USSR 97
9.7 Process eXeCULiON thrEAOS ..ot ettt s 98

viii Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
9.8 PrOCESS COMMIOLeiuieeiereeresreiee st e et r e n s neeeren e e n e nnnrnis 98
9.9 FiNE-grain ProCeESS CONTIOIcueveueeeeereeesieetesteseeseesteeeseeeesseeesseseesesseesessesseseessessensensesessensensens 100

Section 10 TasksS ANd FUNCLIONS. ... en e 102
10.1 Introduction (INfOrMBEIVE)cceiereriere i et see e e se e e e enaenee e nneenens 102
O I S TP RP SR 103
F0.3 FUNCLIONS.ecvtiieteeeie st r et r e bttt e s Rt re e r et eer e r e n e 104
10.4 Task and fuNCtion arguMENT PASSINGveveeereeereereeeresesressesesessesseseessesseseesseseesseseesessessessessens 106
10.5 Import and eXPOrt FUNCLIONS...........coiiiiieiierei e e se e e e e ese e e eneenens 109

SECLION L1 CIASSES. . ereiuieieereiee st er ettt r e e se et e e bt n e R R e e e R b e e ne R e s e n R et rer e nnrens 111
11.1 Introduction (INfOrMBEIVE)ccvieeiriere e e et sre e se e e e enaeseeeeneenens 111
Y | ST 112
L1.3 OVEIVIBW ..ottt n et r et R ettt R Rt e r et nenr et n e n e 113
11.4 ODJECES (ClASSINSLANCE)ereeueeeeeeeieeieeie ettt sttt b e bbb e e b e se et e e e e ene e e eneeneas 113
115 ODJECE PIrOPEITIES. ... ccuiitereeieieeeieeeeeeie ettt sttt s be e s ee e be e se et et st et ebeeaesaeebesbesbesbensenseneeneaneennas 114
11.6 ODJECE MEINOUS ... ettt ettt s b et b e e besbese e b e se e b e e e s ene e e eneeneas 114
T0.7 CONSIIUCTONS......eeeeieeeiee ettt e et e st e ebe e et ae e teeae e saesaeeseesae e beeeeabeeseesbeeaeesaeembebeenbesneaneesaeensesanenneas 115
11.8 SEALIC ClaSS PrOPEITIES.cueiuerteriereeeteie sttt bttt s b e se et e e e e e et ene b e ebesaesaeseene e e aneeneas 116
11,9 SEBEC MEINOMS. ... cveeieiie ettt sttt s ae bbbt e se e se e st e s ebesseebesbeebesaea 116
0 O I I o TSP TSP PRSP 116
11.11 Assignment, re-Naming aNd COPYINGveveeeueiererreeereeseriesese et sresesaesresteseesseseeseeneesesessesseesens 117
11.12 INNeritance aNd SUDCIBSSES.......couiiuiriirierie sttt et sae bt see st e e e e e e e e ene e e eneeneas 118
12.130VErridden MEMDENS.......cc.oiiee ettt b e se e bbb e be e e e eneeneas 119
LI DA SUPEY ..ottt stttk b ket b ke bt e eE b b e £ E b b et e R A e R e e e R b eb e e e bk e R e b b et bbb 119
LI A5 CBSHING ..veeueeeeeiereiste et iree ittt st b et b et se e b b e se b e b e bt s e e b e b e e eE b e ReR £ e A eb e b e R e e b eb e bt re b b ek e be e e bbb be e 120
11.16 ChaiNiNG CONSIIUCLOISvceutteetestesiestesteseeseebes e seeeaee e e eese e e s e et saeeaesseeaesbeseesbesbesaessesbeneenseneaneas 120
11.17 Data hiding and eNCAPSUIBLION...........ceuereiiriirierie ettt see st sbesee e be e seeneeneas 121
11.18 CONSLANt ClASS PrOPEITIEScueeueeueeuerterieeteeteriesteiestesee st eeses e e e se et saesaesbeebesbeseeseese e beneesanesbesbesaens 121
11.19 Abstract classes and Virtual MEtNOAS.ooiriiiii e 122
11.20 Polymorphism: dynamic method TOOKUPcoeriieriniie e e 123
11.21 Class SCOPE rESOIULION OPEIBLOL -ccveiueieiieiieiereeeeie ettt st be st see b et e e aene e e eneeneas 123
11.22 Out Of DIOCK ECIAratiONS.........ccueeeieiireree ettt et sae b sbesaeas 124
11.23ParameteriZe0 CIASSESccuireeieeeeieie ettt ettt st st b e se e b e sbe b e et ene e e neeneas 125
T2 24 TYPEAES ClESS ...ttt ettt bttt ae bt s bt b et e seesb e et e b et e beneeneeneeneas 126
12.25ClasSeS N0 SLIUCTUIESceieeueeterieeteeteete sttt se s e e e e e s s et eaesbesaesaeebesbeseeseesseneeneensaneensaneeneas 126
11.26 MEMOIY MANAGEIMIENTeteeeieeieteeeeteeeeesie s ee et e seesbeeseesheeseesaeeabesbe e benbeesbessseseensesaeaneesaeennesaeansens 127

5= o o I D2 = o Lo [0 ¢ T @0 1 =TT 6 128
12.1 Introduction (INfOMMBEIVE)ccoiueiiitiriesiee ettt ettt ene e eneeneas 128
02,2 OVEIVIBIW ...ttt ettt et b e bt et e b st se et et et et eh e e a e Rt eaeeh e e aesheebe ke seeebeee e eeneenbens et eneennas 128
12.3 RANAOM VAITADIES ...t ettt e ettt ebesbeebesnea 131
12,4 CONSEFAINE DIOCKS ...t bbb e et ne e e eneas 132
12.5 Randomization MELNOGScoiiiiiiiriieie et eb e neeneas 145
12.6 In-line constraints — randomize() With...........coooiiiiiiee e 147
12.7 Disabling random variables with rand_mode()coceeerreriinerie i 148
12.8 Controlling constraints with constraint_MOAE()ccoereriererierereereee e 149
12.9 Dynamic constraint MOifiCaLiON..........ccceoiriririiire e se e eaeas 150
12.101In-line random variabl@ CONIOlcoiiuiriiieieeeer e 150
12.11 Randomization of scope variables — std::randomize().........cooererererereneennee e 151
12.12 Random number system functions and MEthOdScoeeeiiiinn e 153
12.13RANAOM SEBDITITY ...ttt se et et ene e e eneeneas 154
12.14Manually Seeding randOMIiZE..........ccoirieiere ettt st e e ene s e ebesaens 156
12.15Random Weighted CaSE — FANUACASEciveveieeeieieeerie ettt st sttt be e b e nens 157

Copyright 2004 Accellera. All rights reserved. iX

Accellera

SystemVerilog 3.1a Extensions to Verilog-2001
12.16 Random sequence generation — ranNdSEOUENCE.........cieerereruerreriersesseeeseeeesessessessessessessessessessens 158
Section 13 Inter process Synchronization and COMMUNICALION..........cvovererererrnneree e 166
13.1 Introduction (INfOrMBEIVE)ccvieieriire ittt be e e se e e e enaese e e eneenens 166
13,2 SEMEPNOIES.....uecueeeeeeeieete st et te e st st e e see e eseeseeseese et e s sesae st eseesaensentenaenseseenenseeaestenaesaeeeeseseenseseeneens 166
13.3 MBIHDOXES. ..ot 167
13.4 Parameterized MailDOXESvvceirrerrereinirere e 170
L35 EVEN oottt R e Rt 171
13.6 Event sequencing: Wait_Order()c.coveeeiererereriesiesesieseesieseesesseeessesesresresseseessessesseeessssesssssensens 172
13.7 EVENE VANTADIES......ciceceieecicce et 173
Section 14 SChedUIING SEMANTICS.......ciiiirereiresere e en e 176
14.1 Execution of a hardware model and its verification environmentcccccvverevrenneeenennnenns 176
14.2 EVENE SIMUIBLION ... r s s rer e nn e en e 176
14.3 The stratified event SChEAUIES ..o e 176
14.4 The PLI callback CONIOl POINS........coeriiiriirierie ettt st eae e eneas 180
SeCtion 15 ClOCKING BIOCKSc.veeieiiiisiercceres sttt en e 181
15.1 Introduction (INfOMMBEIVE)ccoiuiiiriirie ettt bbb e bbb e e neeneas 181
15.2 Clocking blOCK AECIAIEHIONc.coeiieieiteeerieriee ettt se e st e se e e eneas 181
15.3 INPUL @NA OULPUL SKEWS ...ttt steste sttt e e e s s et aesbe e saesbesbeseessessesee e e seneeeeneeneas 183
15.4 HierarchiCal EXPIESSIONS.......cccuetereeuieterteriertiste e seesseseeseesseseeses e eatsbesaesaeebesbeseessesseseneesesessesesnens 184
15.5 Signalsin multiple clocking BIOCKS........cocciiiiiiiie e 185
15.6 Clocking block scope and HFEHIME.........ccoeiiriiiiiiee e 185
15.7 Multiple clocking blOCKS EXAMPIE........ccceiriirit et 185
15.8 Interfaces and clocking DIOCKS..........cooiiiiiini e 186
15.9 ClOCKING DIOCK BVENES........ciiiieieiiiieeie sttt ettt s s b et e b et et e e e e ene e e eneeneas 187
15,10 CYClEAEIAY: FHE ...ttt ettt bt h e bbb b b e b et e ene e e eneeneas 187
15.11 DEFAUIT CIOCKINGttt ettt bbb s b et et e e e ne e e eneeneas 188
15.22 INPUE SAMPIING ettt et e e st ae b e aesbe e b e beseesbese e e eneaneenee e eneeneas 189
15.13 SYNCHIONOUS EVENES ...ttt ettt be et b bbb e beseesb e st et e e e e ene e e eneeneas 189
15.14 SYNCHIONOUS AFTVES.cuiitiiieite ettt ettt b et ae b e e bt e besbeseesbeebesbe e e bene e e aneeneas 190
SECtion 16 Program BIOCK ..o s en e 193
16.1 Introduction (INfOMMBEIVE)ccoiueririirie ettt et s s e e se e ene e e e neeneas 193
16.2 THE PrOgram CONSIIUCTcootiuertertertestertestertetesteseeeeeseesesse e et eaesbesaesaeebesbeseesbeseeseesenbenseneeneaneas 193
16.3 MUILIPIE PrOGIAIMS. ..ttt ettt b et e b e et e e b et s hesbesbesbesbeseese e st ensebeeneebesrenbesaeas 195
16.4 Eliminating teStDENCH FACESc.coiiiieeiieeertir e ettt s b et s e 195
16.5 Blocking tasks in CyCle/eVent MOE........c.ccoeririiiriie e e e 196
16.6 Program CONLIOI TASKScoueriirirterieriesteste sttt et b ettt sa e s bt see e e se et e e e e ene e e eneeneas 196
= ot o I A A== o] 198
17.1 Introduction (INfOMMBEIVE)coieririiieriee ettt et st se e ebe e e eneeneas 198
17.2 IMMEIALE SSEITIONS.......eeueeeeeietieieeie ettt ettt a ettt s b e s et e b e beseeseese et e e e e ene e e eneeneas 198
17.3 CONCUITENt BSSEItiONS OVEIVIEWcvevirieitieiteiieseeee e e e i st aeste e e besbeseesseseeee e e e ene e e eseeneas 200
17.4 BOOIEAN EXPIESSIONSecueeueeeeuieterieeteatestesaessebeseeseeseasesseeeesesaesseaaesbesaeseesbenseseessesensesesneesesnsesesnens 201
D75 SEOUENCES. ... coteeee ittt sttt ettt ae et ebe e se e s ae e see s ae e te st e b e ebe e b e ebeeebeeasenseembesneeneesaeenesaeenneas 203
17.6 DECIANNG SEOUENCEScueiueeeeuieterieeteeteste st seesbesteseeseaee e e eese e e s st eatsbesaesbeebeabeseesbessesseneanteneeeeneennas 206
17.7 SEOUENCE OPEIALTONScueuieeeiietesieete st st see sttt e eae e ee e e e ese e e st eaesbesaesaeebesbeseessesseeeneenseneeeeneeneas 208
17.8 Manipulating data in @ SBOUENCE.......ccceiririirieiesieree et sbe st st see e st e e b e seebesbeebesaens 224
17.9 Calling subroutines on MatCh Of @ SEQUENCE..........iivirireeeeer ettt 228
17.10 SYSEEM FUNCLIONS.......eieeie ettt ettt et s b et s b e e bt e e e s b e sbe s b e e e s ene e e eneeneas 229
17.11 DECIANNG PrOPEITIES.veeeeereeuieteeeete ettt ettt sb et e et se et et st et e se e e s st ebesbesbesaesaesaeneeeeneeneas 229
17.12 MUILIPl@ ClOCK SUPPOM ...ttt ettt et ettt st besb e s bt see e e bene e e eneeneas 240

X Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
17.13 CONCUITENE @SSEITIONS.cvererreeesesrereseresr s s s s s se st e e e se s er e r s neerer e e ene e 246
17. 24 CIOCK FESOIULION......evrieeerereiiseses et r et er et e s er et s et nr e nn e n e 252
17.15Binding properties to SCOPES OF INSLANCES........covervrreerireeerseereseeesresesresresseseessessesseseesseseesessessens 258
17.16 The EXPECE SLAEEMENTc.eceeeeeeeeieeeete st s ae e s aeere st e see st e seeseene e seneeenneeneas 259
SECHION 18 HIBMAI CRY ...ttt et n et rer et e ens 261
18.1 Introduction (INfOrMBEIVE)ccviueiiriere i sttt s e se e e e enaenee e nneenens 261
S == o1 =R 261
18.3 Compilation UNit SUPPOITcveueeeeeeeereeeerestes e stes e teeesaeseeses e esessessssaessessesreseseeseseesessessessessensessens 265
18.4 TOP-IEVEl INSIANCE.....eiie e re st e seesrese e e se e e enesrenrennens 266
18.5 MOUUIE UECIArAIONS.......vvereeeererecree et 267
18.6 NESLEA MOUUIES........cocvieereriirere ettt er et nn e n e 267
18.7 EXIEIN MOUUIESc.veeriieeereicesese st er et er et 269
18.8 POIt JECIAIAIONSc.eeieeeieeei sttt r e 270
18.9 LiSt Of POIt EXPrESSIONS.cooieuieterieeieeterte ettt seee et se e e sse s et e aesbesaesbesbesbeseeseeseaneeneeneeneeeaneeneas 271
18.10Time UNit QN PIrECISIONcoeiuirtirieeiesteete sttt sttt e e sttt b e ae b e besbeseesbess e be e e nseneeeaneeneas 271
18. 11 MOTUIE INSLANCES ...ttt ettt ettt e et et he et e beebe s bt sbesbesbesee e e s ene e e eneeneas 272
18.12 POrt CONNECLION FUIES ...ttt b e e et et e et ae e e st ebe b e sbesaese e bene e e eneeneas 276
T8 13 INGIMIE SPACESceeeeeeueeieeiestee e steeseesue e se et e bt eseesbesaeeseeeseaaeeaeesbeeaeesheesbesaeanbenbeanbeeaeansesaesnsesaeenseas 277
18.1AHIErarChiCal NBMIESieeiiieeietieeeie ettt et se et et ae et s beebeebeseesbesee b e e e seneeeaneeneas 278
SECLION 19 I NEEITACES.......eeieireiiire ettt n et rer e nrens 279
19.1 Introduction (INfOMMBEIVE)cceiueririirie ettt st s e se e e b e e eneeneas 279
192 INEEITACE SYNEAXiutiieeieieeee ettt et b et e ae b b sb e b et e seese et e e e ne e s ene e e aneaneas 280
19.3 POMSIN INEEITACES.uiteiee ettt st bbb e bt et e e e e ene e e eneeneas 284
RS 1V oo oo 1 £ USSR 285
19.5 Interfaces and SPECiTY DIOCKS..........oiiiiiii e e 291
19.6 Tasksand fUNCLIONS IN INEEITACES.coi i e 291
19.7 Parameterized INTEITACEScouieeeee e et s e e eene e 297
19.8 ViIrTUal TNEEITACES. ... o cuiiteie et ettt et b e s b b e e e e ae e e eneeneas 299
19.9 ACCESSTO INTEITACE ODJECES. .. .ctieiiiieieeet ettt e e ebe e e eaeeneas 303
SECLION 20 COVEIN QOB.....veueerereiireeesreseee et r et s e se e st s e e bt se R Rt e e R b et s e e R e e s e ren e e e rer e e nnas 305
20.1 Introduction (INfOFMBELIVE)ccceoueerieeererie ettt ettt st e e e b e e e ene e e eneas 305
20.2 Defining the coverage MOUE!: COVEIGIOUP.c uuiuirririereereeeeireeiesiesie s s sbeseeseeseeeeeesesseseesesaeas 306
20.3 USING COVEIGrOUP iN CIBSSEScueeuertereeteriiriesteste st see st see ettt sae e s e e s sbesbesbesbesbe e e banseseeneeneas 308
20.4 DEfiNiNG COVEragE POINS.....cueruirteruertieterieseeseesteeeseesee e st esesbesae et stesbeseeseeseesseseeseebessesaesbesbesaeseesnas 309
20.5 DEfINING CrOSS COVEIBOR. ... e veeeueeuteueeeeteeerieeuestesuessesteseeseessesseseeseesseresseesessessesbesbesaessessansenseneanens 315
20.6 SPECITYING COVEragE OPLIONS......c.couiiuieiitieirie ettt sttt st b e b b seesbe e e aenee e eneeneas 319
20.7 Predefined cOVErage MEtNOMSccooiiiririie e ettt e 324
20.8 Predefined coverage system tasks and fUNCLIONS.........ccoiiiiieri e 324
20.9 Organization of option and type_option MEMDENS ..o 324
= o Lo I R o T 0 T = 326
21.1 Introduction (INfOFMBELIVE)ccceueirieenerie et sttt b e e st e e e ene e e eneeneas 326
21.2 Parameter deClaration SYMEBXccoceereririeresiesieie e e et st sbe b b e bese e e sae e e sbesneseeeeas 327
Section 22 Configuration Librari€S.. ... ecerieieieiese e sesesee e st se et seeseesesse e saesseneeseenes 330
22.1 Introduction (INfOFMBELIVE)ccceoueirieeieirie ettt st se e se b e e e ene e e eneeneas 330
222 LIDIBITES ..ttt bbb b e e e ke e e se et et Re Rt e h e b e bt b e bt et e ereeaas 330
Section 23 System Tasks and SyStem FUNCLIONS ...t seebeseene 331
23.1 Introduction (INfOFMBELIVE)cceoueirieinirie et sttt e et e e e eae e e eneeneas 331
23.2 Elaboration-time typeof fUNCLION..........ccciiiieireeee et e 331

Copyright 2004 Accellera. All rights reserved. Xi

Accellera

SystemVerilog 3.1a Extensions to Verilog-2001
23.3 TYPENAME FUNCLION ...t re st et e e ne e e nn e e enae e eneenens 331
234 EXpression Size SyStem fUNCLIONccuvieieieseie ettt nse e e 332
23.5 RaNGE SYStEM FUNCLION........eieieiecieeeecte e st see e e se e e e e ene e e enneneas 333
23.6 ShOIreal CONVEISIONS.....c.coiiiitiririerirtesiete sttt sttt b e s b s et st ne st s e b enesbenenne s 333
23.7 Array querying System fUNCLIONS.ccviireieirerieresee st s se e aeneeneenens 334
23.8 AsSErtion SEVENitY SYSIEM TASKS ...eiuiieeiiiereree e s e sre et na e nnereeneas 335
23.9 Assertion CONtrol SYStEM taSKS.......ciuerireeirecrese et sa e seeneeneas 336
23.10 AsSErtion SYSLEM fUNCLIONSieeieeeeciecre ettt se e a e enae e eneenens 336
23.11 Random number System fUNCLIONS.........cceieriieeieeereree et ese e eneenens 337
b22C T 2 = 0o 1= 1o 11 (o) TSR 337
23.13Coverage SYSteM fUNCLIONS.......cocirieiece et se e st na e e e e nneeneas 337
23.14 Enhancements to Veril0g-2001 SYyStEM taSKSccerierereieerineene e e sesee e see e enaesesseenens 337
23.15%readmemb and SreadMemMN ... s 338
23.16 Bwritememb and PWITEMEMN ..o s 338
23.17File format considerations for multi-dimensional unpacked arrays...........ccooeveeereneeneeeseeeennens 339
23.18 System task arguments for multi-dimensional unpacked array'sccooeevererenereesecieseseeenens 340

SECLION 24 VD DBLA....cueieitereeteriete ettt ettt st b bbb st b e et s et e st et et e ket e ket e b e e et et ebeseebesbenenbenens 342

SeCtion 25 COMPIIEr DIl ECLIVES......coiiiitiie ettt ettt b e bbb et e e e e st s ae st e s aesbesbe b sbeneas 343
25.1 Introduction (INfOrMBELIVE)ccveueeeeeeeireeese et e e s e re e ese e re st e steseese e e e eneeneeeeneenens 343
25.2 "AEfINE MEBCIOS. ..ottt bbb bbbt bttt bttt 343
B C TN T 1F o OSSO 344

Section 26 Featuresunder consideration for removal from SystemVerilogcccveeeieiecncncncienn, 345
26.1 Introduction (INfOrMBELIVE)cceeueeeeeeeire s e e e e e e se s re st e seesrese e eeneeeeneeeeneenens 345
26.2 DEfParam SLALEMENES......cvciieieieeeeeeree et te e e e te e e s ese e e s e esesteseeseeseenseneenensensnnennens 345
26.3 Procedural assign and deassign StAtEMENES..........oiiirireineeeeeee s 345

Section 27 Direct Programming INterface (DPI) ..o e 347
7 R @ Y= V= SO 347
27.2 TWO lQYErS Of tNE DPI ...ttt es 348
27.3 Global name space of imported and exported fUNCLIONS.........ccoeoreireneeneeee e 349
274 Imported tasks @and FUNCHIONS..........oiiiiie e e b 349
275 Calling imPOrted FUNCLIONScciiiiiiriiiiirrere st 355
27.6 EXPOIted FUNCLIONS.couieiitiiiiersie sttt es 356
O = (00T 1= 0 == TP 357
27.8 Disabling DPI tasks and fUNCLIONS..........couiiiiriirinirrcreesee s 357

Section 28 SystemVerilog ASSErtION AP ... e s 359
28.1 REQUITEIMENEScueueetiuietieetereetereete st stebesbese st e b e s e b e ebese e st e e st st e s e e e st et en e et eneebeneeben e benessesesnenes 359
28.2 EXtensionSto VPl ENUMEIAtiONS........ccvieiereneiesiecesesee e steseseeste e seesaeseesseeesseseesesseesessessessesses 359
P2 SIS = (ol) o 7= 1 o o 360
28.4 DYNaMIiC iNFOIMEBIION......c.cotiriitireetirietesiet ettt sttt b e b ene b e sne s 363
28.5 CONLIOl FUNCLIONSoueieeeieieiiesteeeeee ettt s e et e e s e e s seesesteseeseeseenseneensnnannsnnennens 366

Section 29 SystemVerilog COVErage AP ... e e 368
201 REQUITEIMENEScoueueetiuietieetereetereete et s seee s ese st e b esae e be s ebess e st s e st s e s e e e s e et ene et eseebeneeben e beneesesenneses 368
29.2 SystemVerilog real-time COVErage GCCESSuvuiuiririrriirieeeseee et steesee e seses s sene s e snenes 369
20.3 FSIM FECOGNITION ...ttt sttt st b e sttt ettt e e b e b s e b eneenenesne s 374
29.4 VPl COVErage EXLENSIONS.ccouireetirieterieteseete sttt esee et e e s et se s se st sesbe s b s e b eneenenesne s 377

Section 30 SystemVerilog Data Read AP ... e s 381
30.1 Introduction (INFOMMBLIVE)coiviririerieeereeie e es 381

Xii Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
30.2 REQUITEIMENES ...ttt e s e r e s te s te s ae e s te e e e e s ee e eseesesseeseseesteseeseensenannennennees 381
30.3 EXtensionSto VPl @NUMEAiONS.c.covovrrereeiirerreeirisee e 382
30.4 VPl Object type additiONS........ccoeeiiieiise ettt r e s re b nnennas 383
ORI @] o1 ol 19100 = I [T=To | - 1 RS 385
30.6 Usage eXtensioNSt0 VPl FOULINES......c..ccvcoeieciresesiestesiesesee e e e e e e e s seesaesee e naenaenaesesnennens 387
30.7 VPI routines added in SyStEMVEr00 . cccvieeeriiiicsere et 388
IO T == o 1 0o [- YRR 389
30.9 Optionally unloading the data..........cccoveeeererireie e ereeneas 399
30.10 Reading data from multiple databases and/or different read library providers..........ccccoevvvrennee. 399
30.11VPI routines extended in SyStEMV Eril0g.......cvviiiiiiere e e 402
30.12VPI routines added iN SYStEMVENT0Q . cveovieeeriieicrere et 403

Section 31 SystemVerilog VPl ObjeCt MOUE ..o 407
1< I R g oo (8ot o g I (T 0 10T /=) O 407
L2 INSEANCE ..uteieeteeeeeet ettt ettt stttk eh e s b ea e s he e b e bt e beshe e ee e SaeeeRe e e e eheeRe e eheeRbe b e enee Rt e e e naeenreenes 409
I G T 1911 1 = oL OO OO 410
O (0o = o TS O P USROS 410
31.5 Module (supersedes |EEE 1364-2001 26.6.1)ccceoeuererurereneririeieeresisseiesesessesesesssse e sessssesenesnns 411
1 I ST 1Y/ oo oo TP UOP OO 412
I A 10105 1 = ToC R 1 0 o RO 412
31.8 Ports (supersedes |EEE 1364-2001 26.6.5)cccvururirirereienirenieieesesesieseesisessesesessssesesessssesesesnns 413
L9 REF O ..ttt ettt bbbkt b et e b bt £ R bR £ A bR e £ e b b et e b b eb Rt e e bbb 414
31.10Variables (supersedes |EEE 1364-2001 SECtiON 26.6.8)ccovueueirererierereriseeieneresisiesesesisie e 416
31.11Var Select (supersedes |EEE 1364-2001 26.6.8)......cccurerururieriririeieneresieeesesesiesesesiesesesessssesesesens 418
O 2 IV = o 1= o PP TSRS 419
31.13Variable Drivers and Loads (supersedes | EEE 1364-2001 26.6.23)ccccceoeverereneneneneneennns 421
31.14Instance Arrays (supersedes |EEE 1364-2001 26.6.2)cccoeeenreenereenesenie e 421
31.15 Scope (supersedes | EEE 1364-2001 26.6.3)cccovueurererireeieresieieiesesesseesesssessesesessssesessssssesesesnns 422
31.16 10 Declaration (supersedes |EEE 1364-2001 26.6.4)cccorrueurerirerienenerinesiesesesesresesesiesesesesens 423
3127 ClOCKING BIOCK ...ttt et ettt b bbb e b e et ene e e eneennas 424
31.18 Class ODJECE DEFiNITION.......ccuiiiiririiieie ettt st b e bbb e bene e e e e eneas 425
31.19 Constraint, constraint ordering, diStribUtion,coooe i 426
31.20 CONSEFAINE EXPIESS ON......eeueeeeeeueeieeteeeetessesteesesteseeseesbeseeseeeeseesee e saeeaesseesesbesbesbesbesbessesaneesseneanens 427
3L2LCUESS VATBDIES ...ttt 428
31.23Named Events (supersedes |EEE 1364-2001 26.6.11)cccocvrureeririseerererieeeeseresiseesesisiee e 430
31.24 Task, Function Declaration (supersedes IEEE 1364-2001 26.6.18).........ccccceoerereneneseeninsieneennns 431
BL25A6H8S SEBEEITIENE ..ottt ettt e bbbttt st b bbb bt et et ne bbb 432
31.26 Frames (supersedes | EEE 1364-2001 26.6.20)ccccueuerererreienermrieieneesieeeesesesiesese s seseesenens 433
L 27 THIEAOS. ...ttt b et b et b et e b bt ae s bt e bt e bbb e bbb 434
31.28tf call (supersedes |EEE 1364-2001 26.6.19)cccvueueirireriinenerisieienesesieiesesesieiesese e esesesessenens 435
31.29 Module path, path term (supersedes |EEE 1364-2001 26.6.15)ccccevmerienenenenescnieneneennns 436
31.30 CONCUITENE BSSEITIONSeueieeieeieeieeteeieete sttt be b et b see e et e et e a e e e s st e st sbeebesbesbesbeseesbeneeneeneeneas 437
BL.BLPIOPETY DECI ...ttt ettt b e b e bbb et n et ae e ne b nenre e 437
31.32 Property SPECITICALTIONcoiiuiriirierieee e ettt b e sb e sb e b et ene e e e eneas 438
31.33Multiclock SEQUENCE EXPrESSIONocuiiueieeieieeeerecee sttt sttt s sbe bbb e se e eneas 439
31.34.SeqUENCE DECIBIELIONccuiiiiiiiiieie ettt ettt b bt bbb et e e e e e e eneas 440
31.35 SEOUENCE EXPIESSIONueiieiieieieeiieteeeete ettt et e st e see e e e e et s ae e e s seeaesbesbesbesbesbeneeseneeeeneennas 441
31.36 Attribute (supersedes | EEE 1364-2001 26.6.42)cccorrerirrireeeninesieneesieesesesesissesesesssseseseenns 442
31.37 Atomic Statement (supersedes |EEE 1364-2001 26.6.27)ccccoererreerirerieeeenereniseesesisieeseseeens 443
31.38lIf, if else, return, case, do while (supersedes | EEE 1364-2001 26.6.35, 26.6.36)cccevuenee. 444
31.39waits, disables, expect, foreach (supersedes IEEE 1364 26.6.38)ccoceueeeeireeneneeierceenieene 445
31.40 Simple expressions (supersedes |EEE 1364-2001 26.6.25)ccoceevererienenieneseesenieseeieseeneeneas 446
31.41 Expressions (supersedes | EEE 1364-2001 26.6.26)o.ceeererereeerereerresesesieenesisseesessssesenesnns 447
31.42 Event control (supersedes |EEE 1364-2001 26.6.30)ceoerereruenerieneniesieseeseesieseeseseeseeeenens 448

Copyright 2004 Accellera. All rights reserved. Xiii

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001
31.43Event stmt (supersedes |EEE 1364-2001 26.6.27)ccccuverereriesesesieseseseesssssessessesssssessssessens 448
31.44 Process (supersedes |EEE 1364-2001 26.6.27)ccccoveeereerererieseeesseeessessessessessesssssessessessssees 449
31.45Assignment (supersedes |EEE 1364-2001 26.6.28)cccccevierereesieriesesesseesseseesseseesesessessensens 449

F N T Lo G N o 4 T 1S 1 = G 451

F N T Tc a2 T S VAT o £ 488

F N T Lc G GRS o [- e € o= 490

ANNEX D LINKEA LiSES. ittt e 492

F N T Lc G R T B O - = 498

ANNEXF INCIUAR FITES .t 523

Annex G Inclusion of Foreign Language COUE..........cccaeririiinienie et 529

Annex H Formal Semantics of CONCUITENt ASSEITIONScciviririiereeirieisieesiee et 533

ANNEX T SV VPT_USEE Nt bbb st b e bbb b b e e 544

F N L= G I] [0S Y SRR 553

ANNEX K BibDlTOGIr@PRY .t et e b b e ettt et s neene e 555

Index 557

Xiv Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 1
Introduction to SystemVerilog

This document specifies the Accellera extensions for a higher level of abstraction for modeling and verifica-
tion with the Verilog Hardware Description Language. These additions extend Verilog into the systems space
and the verification space. SystemVerilog is built on top of the work of the IEEE Verilog 2001 committee.

Throughout this document:

— “Verilog” or “Verilog-2001" refers to the IEEE Std. 1364-2001 standard for the Verilog Hardware Descrip-
tion Language

— “SystemVerilog” refersto the Accellera extensions to the Verilog-2001 standard.

This document numbers the generations of Verilog as follows:
— “Verilog 1.0" isthe IEEE Std. 1364-1995 Verilog standard, which is also called Verilog-1995

— “Verilog 2.0 is the IEEE Std. 1364-2001 Verilog standard, commonly called Verilog-2001; this genera-
tion of Verilog contains the first significant enhancements to Verilog since its release to the public in 1990

— “SystemVerilog 3.xX" is Verilog-2001 plus an extensive set of high-level abstraction extensions, as defined
in this document

— SystemVerilog 3.0, approved as an Accellera standard in June 2002, includes enhancements primarily
directed at high-level architectural modeling

— SystemVerilog 3.1, approved as an Accellera standard in May 2003, includes enhancements primarily
directed at advanced verification and C language integration

— SystemVerilog 3.1a, approved as an Accellera standard in April 2004, includes corrections and clarifi-
cations to the SystemVerilog 3.1 manual, as well as some additional enhancementsto Verilog such as
VCD and PLI specifications for SystemVerilog constructs.

The Accellerainitiative to extend Verilog is an ongoing effort under the direction of the AccelleraHDL + Tech-
nical Subcommittee. This committee will continue to define additional enhancements to Verilog beyond Sys-
temVerilog 3.1a

SystemVerilog is built on top of Verilog 2001. SystemVerilog improves the productivity, readability, and reus-
ability of Verilog based code. The language enhancements in SystemVerilog provide more concise hardware
descriptions, while still providing an easy route with existing tools into current hardware implementation
flows. The enhancements also provide extensive support for directed and constrained-random testbench devel-
opment, coverage driven verification, and assertion based verification.

SystemVerilog adds extended and new constructs to Verilog-2001, including:

— Extensions to data types for better encapsulation and compactness of code and for tighter specification
— C datatypes: int, typedef, struct, union, enum
— other data types: bounded queues, logic (0, 1, X, Z) and bit (O, 1), tagged unions for safety

— dynamic data types: string, classes, dynamic queues, dynamic arrays, associative arraysincluding auto-
matic memory management freeing users from de-allocation issues

— dynamic casting and bit-stream casting

— Automatic/static specification on a per variable instance basis
— Extended operators for concise description

— Wild equality and inequality

— built-in methods to extend the language

Copyright 2004 Accellera. All rights reserved. 1

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001
— operator overloading
— streaming operators
— set membership
— Extended procedural statements
— pattern matching on selection statements for use with tagged unions
— enhanced loop statements plus the foreach statement
— Clike jump statements: return, break, continue
— final blocks that executes at the end of simulation (inverse of initial)
— extended event control and sequence events
— Enhanced process control
— Extensions to aways blocks to include synthesis consistent simulation semantics
— Extensionsto fork...join to model pipelines and for enhanced process control
— Fine-grain process control
— Enhanced tasks and functions
— Cllike void functions
— pass by reference
— default arguments
— pass by name
— optional arguments
— import/export functions for DPI (Direct Programming Interface)
— Classes: Object-Oriented mechanism that provides abstraction, encapsulation, and safe pointer capabilities
— Automated testbench support with random constraints
— Interprocess communication synchronization
— semaphores
— mailboxes
— event extensions, event variables, and event sequencing
— Clarification and extension of the scheduling semantics

— Cycle-Based Functionality: Clocking blocks and cycle-based attributes that help reduce devel opment, ease
maintainability, and promote reusability:

— cycle-based signal drives and samples
— synchronous samples
— race-free program context
— Assertion mechanism for verifying design intent and functional coverage intent.
— property and sequence declarations
— assertions and Coverage statements with action blocks

— Extended hierarchy support

2 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a
— packages for declaration encapsulation with import for controlled access
— compilation-unit scope nested modules and extern modules for separate compilation support
— extension of port declarations to support interfaces, events, and variables.
— %root to provide unambiguous access using hierarchical references
— Interfaces to encapsulate communication and facilitate “ Communication Oriented” design
— Functional coverage
— Direct Programming Interface (DPI) for clean, efficient interoperation with other languages (C provided)
— Assertion API
— Coverage AP
— DataRead API
— VPl extensions for SystemVerilog constructs

— Concurrent assertion formal semantics

Copyright 2004 Accellera. All rights reserved. 3

SystemVerilog 3.1a

Section 2
Literal Values

2.1 Introduction (informative)

Accellera
Extensionsto Verilog-2001

The lexical conventions for SystemVerilog literal values are extensions of those for Verilog. SystemVerilog
adds literal time values, literal array values, literal structures and enhancementsto literal strings.

2.2 Literal value syntax

ti me_literal5 =
unsigned_number time_unit
| fixed point_number time_unit
time_unit ::=s|ms|us|ns|ps|fs|step
number ::=
integral_number
| real_number
integral_number ::=
decimal_number
| octal_number
| binary_number
| hex_number

decimal_number ::=
unsigned_number
| [size] decimal_base unsigned_number
| [size] decima_base x_digit{ }
| [Size] decima_base z digit{ }
binary_number ::=[size] binary_base binary value
octal_number ::=[size] octal_base octal_value
hex_number ::=[size] hex_base hex_value
sign:=+|-
size::=non_zero_unsigned number
non_zero_unsi gned_number1 ::=non_zero_decimal_digit{ _ | decimal_digit}
real_numberl ::=
fixed_point_number
| unsigned_number [. unsigned_number] exp [sign] unsigned_number
fixed_point_number? ::= unsigned_number . unsigned_number
exp:=el|E
unsigned_number? ::= decimal_digit{ _|decimal_digit }
string_literal ;=" { Any_ASCI|_Characters} "

/I from Annex A.8.4

/I from Annex A.8.7

[l from Annex A.8.8

2.3 Integer and logic literals

Literal integer and logic values can be sized or unsized, and follow the same rules for signedness, truncation

and left-extending as Verilog-2001.

4 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

SystemVerilog adds the ability to specify unsized literal single bit values with a preceding apostrophe (+), but
without the base specifier. All bits of the unsized value are set to the value of the specified bit. In a self-deter-
mined context these literals have awidth of 1 bit, and the value is treated as unsigned.

‘o, '1, 'X, 'x, 'Z, 'z // sets all bits to this value

2.4 Real literals

The default typeis real for fixed point format (e.g. 1.2), and exponent format (e.g. 2. 0e10).

A cast can be used to convert literal real valuesto the shortreal type (e.g., shortreal’ (1.2)). Casting
is described in Section 3.14.

2.5 Time literals

Time is written in integer or fixed point format, followed without a space by atime unit (fs ps ns us ms s
step). For example:

0.1ns
40ps

The time literal is interpreted as a realtime value scaled to the current time unit and rounded to the current
time precision. Note that if atime literal is used as an actual parameter to a module or interface instance, the
current time unit and precision are those of the module or interface instance.

2.6 String literals

A string literal is enclosed in quotes and has its own data type. Non-printing and other special characters are
preceded with a backslash. SystemVerilog adds the following specia string characters:

\v vertical tab

\f form feed

\a bell

\x02 hex number

A string literal must be contained in a single line unless the new line is immediately preceded by a \ (back
slash). In this case, the back slash and the new line are ignored. There is no predefined limit to the length of a
string literal.

A string literal can be assigned to an integral type, asin Verilog-2001. If the size differs, it isright justified.

byte cl = "A" ; bit [7:0] d = "\n" ;
bit [0:11] [7:0] c2 = "hello world\n" ;

A string literal can be assigned to an unpacked array of bytes. If the size differs, it isleft justified.
byte c¢3 [0:12] = "hello world\n" ;

Packed and unpacked arrays are discussed in Section 4. The difference between string literalsand array literals
is discussed in Section 2.7, which follows.

String literals can also be cast to a packed or unpacked array, which shall follow the same rules as assigning a
literal string to a packed or unpacked array. Casting is discussed in Section 3.14.

SystemVerilog 3.1 also includes a string datatype to which a string literal can be assigned. Variables of type

string have arbitrary length; they are dynamically resized to hold any string. String literals are packed arrays
(of awidth that is a multiple of 8 bits), and they are implicitly converted to the string type when assigned to a

Copyright 2004 Accellera. All rights reserved. 5

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

string type or used in an expression involving string type operands (see Section 3.7).

2.7 Array literals
Array literals are syntactically similar to Cinitializers, but with the replicate operator ({{}}) allowed.

int n[1:2][1:3] = {{0,1,2},{3{4}}};
The nesting of braces must follow the number of dimensions, unlikein C. However, replicate operators can be
nested. The inner pair of bracesin areplication is removed. A replication expression only operates within one
dimension.

int n[1:2]1(1:3] = {2{{3{4, 5}}}}; // same as {{4,5,4,5,4,5},{4,5,4,5,4,5}}

If the typeis not given by the context, it must be specified with a cast.

typedef int triple [1:3];
$mydisplay (triple’{0,1,2});

Array literals can also use their index or type as akey, and a default key value (see Section 7.13).

b = {1:1, default:0}; // indexes 2 and 3 assigned 0

2.8 Structure literals

Structure literals are syntactically similar to C initializers. Structure literals must have a type, either from con-
text or a cast.

typedef struct {int a; shortreal b;} ab;
ab c¢;
c = {0, 0.0}; // structure literal type determined from
// the left hand context (c)
Nested braces should reflect the structure. For example:
ab abarr[1:0] = {{1, 1.0}, {2, 2.0}};

Note that the C alternative {1, 1.0, 2, 2.0} isnot alowed.

Structure literals can also use member name and value, or data type and default value (see Section 7.14):

c = {a:0, b:0.0}; // member name and value for that member
c = {default:0}; // all elements of structure c are set to 0
d = ab’{int:l, shortreal:l.o}; // data type and default value for all members

// of that type

When an array of structures is initialized, the nested braces should reflect the array and the structure. For
example:

ab abarr[1:0] = {{1, 1.0}, {2, 2.0}};

Replicate operators can be used to set the values for the exact number of members. The inner pair of bracesin
areplication is removed.

struct {int X,Y,Z;} XYZ = {3{1}};
typedef struct {int a,bl4];} ab_t;
int a,b,c;

ab t vi1[1:0] [2:0];

6 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

vi = {2{{3{a,{2{b,c}}}}}};
/* expands to {{3{{a,{2{b,c}}}}}, {3{{a,{2{b,c}}}}}} */

~
*
®
b
s}
9
5
(o
0]
o
0
—~
=
=
v
—~
o
Q
o
Q
e
e
-~
V)
—~
o
Q
o
Q
e
e
—
V)
—~
o
Q
o
Q
e
e
=

Copyright 2004 Accellera. All rights reserved. 7

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Section 3
Data Types

3.1 Introduction (informative)

To provide for clear trandation to and from C, SystemVerilog supports the C built-in types, with the meaning
given by the implementation C compiler. However, to avoid the duplication of int and 1ong without causing
confusion, in SystemVerilog, int is32 bitsand 1ongint is64 bits. The C £1oat typeiscaled shortreal in
SystemVerilog, so that it is not be confused with the Verilog-2001 real type.

Verilog-2001 has net data types, which can have O, 1, X or Z, plus 7 strengths, giving 120 values. It also has
variable data types such as reg, which have 4 values 0, 1, X, Z. These are not just different data types, they are
used differently. SystemVerilog adds another 4-value data type, caled 1ogic (see Sections 3.3.2 and 5.6).

SystemVerilog adds string, chandle and class data types, and enhances the Verilog event type.

Verilog-2001 provides arbitrary fixed length arithmetic using reg data types. The reg type can have bits at X
or Z, however, and so are less efficient than an array of bits, because the operator evaluation must check for X
and Z, and twice as much data must be stored. SystemVerilog adds abit type which can only have bitswith O
or 1 values. See Section 3.3.2 on 2-state data types.

Automatic type conversions from a smaller number of bitsto alarger number of bitsinvolve zero extensions if
unsigned or sign extensions if signed, and do not cause warning messages. Automatic truncation from a larger
number of bits to asmaller number does cause awarning message. Automatic conversions between 1ogic and
bit do not cause warning messages. To convert alogic value to a bit, 1 convertsto 1, anything elseto 0.

User defined types are introduced by typedef and must be defined before they are used. Data types can aso
be parametersto modules or interfaces, making them like class templates in object-oriented programming. One
routine can be written to reverse the order of elementsin any array, which isimpossiblein C and in Verilog.

Structures and unions are complicated in C, because the tags have a separate name space. SystemVerilog fol-
lows the C syntax, but without the optional structure tags.

See also Section 4 on arrays.

8 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

3.2 Data type syntax

data type::= /l from Annex A.2.2.1
integer_vector_type|[signing] { packed_dimension }
| integer_atom type[signing]
| non_integer_type
| struct_union [packed [signing]] { struct_union_member { struct_union_member } }
{ packed_dimension }13
| enum [enum_base type] { enum_name declaration{ , enum_name_declaration} }
| string
| chandle
| virtual [interface] interface identifier
| [class_scope | package scope] type identifier { packed dimension}
| class type
| event
| ps_covergroup_identifier
enum_base type::=
integer_atom_type|[signing]
| integer_vector_type[signing] [packed_dimension]
| type_identifier [packed_dimension]24
enum_name_declaration ::=
enum_identifier [[integral_number [: integral_number]]] [= constant_expression]
class scope ::=class type::
class type::=
ps class identifier [parameter_value assignment]
{ :: class_identifier [parameter_value assignment] }
integer_type ::=integer_vector_type | integer_atom_type
integer_atom_type ::= byte | shortint | int | longint | integer |time
integer_vector_type::= bit | logic | reg
non_integer_type ::=shortreal |real | realtime
net_type ::= supplyO | supplyl | tri|triand | trior | triO|tril|wire|wand | wor
signing ::=signed | unsigned
simple_type ::= integer_type | non_integer_type | ps_type_identifier

struct_uni on_member27 =

{ attribute_instance } data type or_void list_of_variable identifiers;
data type or_void ::= data type|void
struct_union ::=struct | union [tagged]
variable_decl_assignment ::= // from Annex A.2.4
variable_identifier variable dimension [= expression]
| dynamic_array variable identifier [] [= dynamic_array _new]
| class variable identifier [= class new]

| [covergroup variable identifier] = new [(list_of arguments)]16

Syntax 3-1—data types (excerpt from Annex A)

Copyright 2004 Accellera. All rights reserved. 9

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

3.3 Integer data types
SystemVerilog offers several integer data types, representing a hybrid of both Verilog and C data types:

Table 3-1: Integer data types

shortint 2-state SystemVerilog data type, 16 bit signed integer

int 2-state SystemVerilog data type, 32 bit signed integer

longint 2-state SystemVerilog data type, 64 bit signed integer

byte 2-state SystemVerilog data type, 8 bit signed integer or ASCII character
bit 2-state SystemVerilog data type, user-defined vector size

logic 4-state SystemVerilog data type, user-defined vector size

reg 4-state Verilog-2001 data type, user-defined vector size

integer 4-state Verilog-2001 data type, 32 hit signed integer

time 4-state Verilog-2001 data type, 64-bit unsigned integer

3.3.1 Integral types

The term integral is used throughout this document to refer to the data types that can represent a single basic
integer datatype, packed array, packed struct, packed union, enum, Of time.

3.3.2 2-state (two-value) and 4-state (four-value) data types

Types that can have unknown and high-impedance values are called 4-state types. These are logic, reg,
integer and time. The other types do not have unknown values and are called 2-state types, for examplebit
and int.

The difference between int and integer isthat int is 2-state logic and integer is4-state logic. 4-state val-

ues have additional bitsthat encode the X and Z states. 2-state data types can simulate faster, take less memory,
and are preferred in some design styles.

3.3.3 Signed and unsigned data types

Integer types use integer arithmetic and can be signed or unsigned. This affects the meaning of certain opera-
torssuch as‘<’, etc.

int unsigned ui;
int signed si;

The data types byte, shortint, int, integer and longint default to signed. The datatypesbit, reg
and logic default to unsigned, as do arrays of these types.

Note that the signed keyword is part of Verilog-2001. The unsigned keyword is areserved keyword in Ver-
ilog-2001, but is not utilized.

See also Section 7, on operators and expressions.

10 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

3.4 Real and shortreal data types

The rea1! datatypeis from Verilog-2001, and isthe same asaC double. The shortreal datatypeisaSys-
temVerilog datatype, and isthe sameasaC float.

3.5 Void data type

The void data type represents non-existent data. This type can be specified as the return type of functions,
indicating no return value. Thistype can aso be used for members of tagged unions (see Section 3.11).

3.6 chandle data type

The chandle data type represents storage for pointers passed using the DPI Direct Programming Interface
(see Section 27). The size of thistypeis platform dependent, but shall be at least large enough to hold a pointer
on the machine in which the tool is running.

The syntax to declare a handleis as follows:
chandle variable name ;

where variable nameisavalid identifier. Chandles shall always be initialized to the value nul11, which hasa
value of 0 on the C side. Chandles are very restricted in their usage, with the only legal uses being as follows:

— Only the following operators are valid on chandle variables:
— Equality (==), inequality (1 =) with another chandle or withnull

— Caseequality (===), caseinequality (!==) with another chandle or withnull (same semanticsas ==
and 1=)

— Can be tested for aboolean value that shall be O if the chandle iSnull and 1 otherwise
— Only the following assignments can be made to a chandle

— Assignment from another chandle

— Assignment to null

— Chandles can be inserted into associative arrays (refer to Section 4.9), but the relative ordering of any two
entries in such an associative array can vary, even between successive runs of the same tool

— Chandles can be used within a class
— Chandles can be passed as arguments to functions or tasks

— Chandles can be returned from functions

The use of chandlesisrestricted as follows:
— Ports shall not have the chand1e datatype
— Chandles shall not be assigned to variables of any other type
— Chandles shall not be used:
— Inany expression other than as permitted above
— Asports
— Insenditivity lists or event expressions

1 The real and shortreal types are represented as described by |EEE 754-1985, an |EEE standard for floating point numbers (See [K1] in
Annex K).

Copyright 2004 Accellera. All rights reserved. 11

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

— In continuous assignments

— Inunions

— In packed types

3.7 String data type

SystemVerilog includes a string data type, which is a variable size, dynamically allocated array of bytes.
SystemVerilog also includes a number of special methods to work with strings.

Verilog supports string literals, but only at the lexical level. In Verilog, string literals behave like packed arrays
of awidth that isamultiple of 8 bits. A string literal assigned to a packed array of an integral variable of adif-
ferent size is either truncated to the size of the variable or padded with zeroes to the |eft as necessary.

In SystemVerilog string literals behave exactly the same as in Verilog However, SystemVerilog also supports
the string datatype to which a string literal can be assigned. When using the string data type instead of an
integral variable, strings can be of arbitrary length and no truncation occurs. Literal strings are implicitly con-
verted to the string type when assigned to a string type or used in an expression involving string type
operands.

Variables of type string can be indexed from 0 to N-1 (the last element of the array), and they can take on the
special value“”, which is the empty string. Reading an element of a string yields a byte.

The syntax to declare astring is:

string variable name [= initial value];

where variable nameis avalid identifier and the optional initial_value can be a string literal or the value
for an empty string. For example:

string myName = "John Smith";

If aninitial valueis not specified in the declaration, the variable isinitialized to “”, the empty string.

SystemVerilog provides a set of operators that can be used to mani pulate combinations of string variables and
string literals. The basic operators defined on the string datatype are listed in Table 3-2.

A string literal can be assigned to a string or an integral type. If their size differs the literal isright justified
and either truncated on the left or zero filled on the |eft, as necessary. For example:

byte ¢ = "A"; // assign to c "A"
bit [10:0] a = "\x41"; // assigns to a ‘b000_0100 0001
bit [1:4][7:0] h = "hello" ; // assigns to h "ello"

A string, string literal, or packed array can be assigned to a string variable. The string variable shall
grow or shrink to accommodate the packed array. If the size (in bits) of the packed array is not a multiple of 8,
then the packed array is zero filled on the left.

For example:
string sl = "hello"; // sets sl to "hello"
bit [11:0] b = 12'ha41l;
string s2 = b; // sets s2 to ’'h0a4l

As asecond example:

reg [15:0] r;
integer 1 = 1;

12 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001

SystemVerilog 3.1a

string b = "";
string a = {"Hi", b};
r = a; // OK
b =r; // OK (implicit cast, implementations can issue a warning)
b = "Hi" // OK
b = {5{"Hi"}}; // OK
a = {i{"i"}}; // OK (non constant replication)
r = {i{"Hi"}}; // invalid (non constant replication)
a = {i{b}}; // OK
a = {a,b}; // OK
a = {"Hi",b}; // OK
r = {"H", "}, // yields "H\0" "" is converted to 8’'b0
b = {mg","n}; // yields "H" "" is the empty string
al0] = "h"; // OK same as al[0] = "hi")
Table 3-2: String operators
Operator Semantics
Strl == Str2 Equality. Checksiif the two strings are equal. Result is 1 if they are equal and O if
they are not. Both strings can be of type string. Or one of them can be a string lit-
eral. If both operands are string literals, the expression is the same Verilog equdity
operator for integer types. The special value " " is alowed.
Strl != Str2 Inequality. Logical Negation of ==
Strl < Str2 Comparison. Relational operators return 1 if the corresponding condition is true
Strl <= Str2 using the lexicographical ordering of thetwo strings St r1 and Str2. The compari-
Strl > Str2 son behaves like the ANSI C st rcmp function (or the compare string method)
Strl >= Str2 (with regard to the lexical ordering) and embedded null bytes are included. Both
operands can be of type string, or one of them can be astring literal.
{str1i,str2,...,Strn} Concatenation. Each operand can be of type string or astring literal (it shall be

implicitly converted to type string). If at least one operand is of type string,
then the expression evaluates to the concatenated string and is of type string. If
all the operands are string literals, then the expression behaves like a Verilog concat-
enation of integral types; if the result is then used in an expression involving
string types, itisimplicitly converted to the string type.

{multiplier{str}}

Replication. Str can be of type string or astring literal. Multiplier must be of
integral type and can be non-constant. If multiplier is non-constant or Str is of type
string, theresult isastring containing N concatenated copies of Str, whereN is
specified by the multiplier. If Str isaliteral and the multiplier is constant, the
expression behaves like numeric replication in Verilog (if the result isused in
another expression involving string types, it isimplicitly converted to the string
type).

Strlindex] Indexing. Returns abyte, the ASCII code at the given index. Indexes range from 0 to
N-1, where N isthe number of charactersin the string. If given an index out of
range, returns 0. Semantically equivalentto Str.getc (index), in Section 3.7.3.

Str.method(...) The dot (.) operator is used to invoke a specified method on strings.

SystemVerilog also includes a number of special methods to work with strings. These methods use the built-in
method notation. These methods are described in the following subsections.

3.7.1len()

function int len|()

Copyright 2004 Accellera. All rights reserved. 13

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

— str.len() returnsthe length of the string, i.e., the number of charactersin the string (excluding any ter-
minating character).

— If stris"", thenstr.len() returnsO.

3.7.2 putc()

task putc(int i, string s)
task putc(int i, byte c)

— str.putc (i, c) replacestheith character in str with the given integral value.
— str.putc (i, s) replacestheith character in str with the first character ins.
— s can be any expression that can be assigned to a string.
— putc doesnot changethesizeof str: If i <0ori >=str.1len(), then str isunchanged.
Note: str.putc (j, x) issemanticaly equivaenttostr[j] = x.
3.7.3 getc()

function int getc(int i)
— str.getc (i) returnsthe ASCII code of the ith character in str.
— Ifi<0ori>=str.len(),thenstr.getc (i) returnsO.
Note x = str.getc(j) issemanticaly equivaenttox = str([j].
3.7.4 toupper()

function string toupper ()
— str.toupper () returnsastring with charactersin str converted to uppercase.
— str isunchanged.
3.7.5 tolower()

function string tolower ()
— str.tolower () returnsastring with charactersin str converted to lowercase.
— str isunchanged.
3.7.6 compare()

function int compare (string s)

— str.compare (s) compares str and s, asin the ANSI C strcmp function (with regard to lexical order-
ing and return value), and embedded null bytes are included.

See therelational string operatorsin Section 3.7, Table 3-2.

3.7.7 icompare()

function int icompare (string s)

— str.icompare (s) compares str and s, likethe ANSI C strcmp function (with regard to lexical order-
ing and return value), but the comparison is case insensitive and embedded null bytes are included.

3.7.8 substr()

function string substr(int i, int j)

— str.substr (i, 3j) returnsanew string that isa substring formed by charactersin position i through 5
of str.

14 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

— Ifi<0,j<i,orj>=str.len(), substr () returns" " (the empty string).

3.7.9 atoi(), atohex(), atooct(), atobin()

function integer atoi ()

function integer atohex()
function integer atooct ()
function integer atobin()

— str.atoi () returnstheinteger corresponding to the ASCII decimal representation in str. For example:
str = "123";
int i = str.atoi(); // assigns 123 to 1i.

The conversion scans all leading digits and underscore characters (_) and stops as soon as it encounters
any other character, or the end of the string. Returns zero if no digits were encountered. It does not parse
the full syntax for integer literals (sign, size, tick, base).

— atohex interprets the string as hexadecimal.
— atooct interpretsthe string as octal.

— atobin interprets the string as binary.

3.7.10 atoreal()

function real atoreal ()
— str.atoreal () returnsthereal humber corresponding to the ASCII decimal representationin str.

The conversion parses Verilog syntax for real constants. The scan stops as soon as it encounters any char-
acter that does not conform to this syntax, or the end of the string. Returns zero if no digits were encoun-
tered.

3.7.11 itoa()

task itoa(integer 1i)

— str.itoa (i) storesthe ASCII decimal representation of i into str (inverse of atoi).

3.7.12 hextoa()

task hextoa (integer i)

— str.hextoa (i) storesthe ASCII hexadecimal representation of i into str (inverse of atohex).

3.7.13 octtoa()

task octtoa(integer i)
— str.octtoa (i) storesthe ASCII octal representation of i into str (inverse of atooct).
3.7.14 bintoa()

task bintoa(integer 1)
— str.bintoa (i) storesthe ASCII binary representation of i into str (inverse of atobin).
3.7.15 realtoa()

task realtoa(real r)

— str.realtoa (r) storesthe ASCII rea representation of i into str (inverse of atoreal).

Copyright 2004 Accellera. All rights reserved. 15

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

3.8 Event data type

The event datatypeis an enhancement over Verilog named events. SystemVerilog events provide a handle to
asynchronization object. Like Verilog, event variables can be explicitly triggered and waited for. Furthermore,
SystemVerilog events have a persistent triggered state that lasts for the duration of the entire time step. In addi-
tion, an event variable can be assigned another event variable or the special value null. When assigned
another event variable, both event variables refer to the same synchronization object. When assigned nul1, the
association between the synchronization object and the event variable is broken. Events can be passed as argu-
ments to tasks.

The syntax to declare an event is:
event variable name [= initial value];

Where variable_name is a valid identifier and the optional initial_value can be another event variable or the
special value null.

If aninitial valueis not specified then the variable isinitialized to a new synchronization object.

If the event is assigned nul1, the event becomes nonblocking, as if it were permanently triggered.

Examples:
event done; // declare a new event called done
event done too = done; // declare done too as alias to done
event empty = null; // event variable with no synchronization object

Event operations and semantics are discussed in detail in Section 13.5.

3.9 User-defined types

type_declaration ::= I/ from Annex A.2.1.3
typedef data_type type_identifier variable dimension ;
| typedef interface instance identifier . type_identifier type identifer ;
| typedef [enum | struct | union | class] type_identifier ;

Syntax 3-2—user-defined types (excerpt from Annex A)
The user can define anew type using typedef, asin C.
typedef int intP;
This can then be instantiated as:
intP a, b;
A type can be used before it is defined, provided it isfirst identified as atype by an empty typedef:
typedef foo;
foo f = 1;
typedef int foo;
Note that this does not apply to enumeration values, which must be defined before they are used.
User defined type identifiers have the same scoping rules as data identifiers, except that hierarchical reference

to type identifiers shall not be allowed. References to type identifiers defined within an interface through ports
are alowed provided they are locally re-defined before being used.

16 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

interface intf i;
typedef int data t;
endinterface

module sub(intf i p)
typedef p.data t my data t;
my data_ t data;
// type of ’'data’ will be int when connected to interface above
endmodule

User-defined type names must be used for complex data types in casting (see Section 3.14, below), which only
allows simple type names, and as type parameter values when unpacked array types are used.

Sometimes a user defined type needs to be declared before the contents of the type has been defined. Thisis of
use with user defined types derived from enum, struct, union, and class. For an example, see
Section 11.24. Support for thisis provided by the following forms for typede€£:

typedef enum type declaration identifier;
typedef struct type declaration identifier;
typedef union type declaration identifier;
typedef class type declaration identifier;
typedef type declaration identifier;

Notethat, while thisis useful for coupled definitions of classes as shown in Section 11.24, it cannot be used for
coupled definitions of structures, since structures are statically declared and there is no support for pointers to
structures.

The last form shows that the type of the user defined type does not have to be defined in the forward declara-
tion.

A typedef inside agenerate shall not define the actual type of aforward definition that exists outside the
scope of the forward definition.

3.10 Enumerations

data type::= // from Annex A.2.2.1

| enum [enum_base type] { enum_name declaration{ , enum_name declaration} }
enum_base type ::=
integer_atom_type[signing]
| integer_vector_type[signing] [packed_dimension]
| type_identifier [packed dimension]?*
enum_name _declaration ::=
enum_identifier [[integral_number [: integral_number]]] [= constant_expression |

Syntax 3-3—enumerated types (excerpt from Annex A)

An enumerated type declares a set of integral named constants. Enumerated data types provide the capability
to abstractly declare strongly typed variables without either a data type or data value(s) and later add the
required data type and value(s) for designs that require more definition. Enumerated data types also can be eas-
ily referenced or displayed using the enumerated names as opposed to the enumerated val ues.

In the absence of a data type declaration, the default data type shall be int. Any other data type used with enu-
merated types shall require an explicit data type declaration.

Copyright 2004 Accellera. All rights reserved. 17

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

An enumerated type defines a set of named values. In the following example, 1ight1 and 1ight2 are defined
to be variables of the anonymous (unnamed) enumerated int type that includes the three members: red, yel-
low and green

enum {red, yellow, green} lightl, light2; // anonymous int type

An enumerated name with X or z assignments assigned to an enum With no explicit data type or an explicit 2-
state declaration shall be a syntax error.

// Syntax error: IDLE=2'b00, XX=2'bx <ERROR>, S1=2'b01l, S2=2'bl0
enum {IDLE, XX='x, S1=2'b01, S$S2=2'bl0} state, next;

An enum declaration of a4-state type, such asinteger, that includes one or more nameswith x or z assignments
shall be permitted.

// Correct: IDLE=0, XX='x, Sl=1, $2=2
enum integer {IDLE, XX='x, S1='b01, S2='bl0} state, next;

An unassigned enumerated name that follows an enum name with x or z assignments shall be a syntax error.

// Syntax error: IDLE=2'b00, XX=2'bx, S1=??, S2=?7
enum integer {IDLE, XX='x, S1, S2} state, next;

The values can be cast to integer types, and increment from an initial value of 0. This can be overridden.
enum {bronze=3, silver, gold} medal; // silver=4, gold=5

The values can be set for some of the names and not set for other names. The optional value of an enum named
constant is an elaboration time constant expression (see Section 5.3) and can include references to parameters,
local parameters, genvars, other enum named constants, and constant functions of these. Hierarchical names
and const variables are not allowed. A name without a value is automatically assigned an increment of the
value of the previous name.

// ¢ 1s automatically assigned the increment-value of 8
enum {a=3, b=7, c} alphabet;

If an automatically incremented value is assigned elsewhere in the same enumeration, this shall be a syntax
error.

// Syntax error: c and d are both assigned 8
enum {a=0, b=7, c, d=8} alphabet;

If the first nameis not assigned avalue, it is given the initial value of 0.

7, c=8
c}

enum {a, b=7, alphabet;

Any enumeration encoding value that is outside the representabl e range of the enum shall be an error. If any of
the enum members are defined with a different sized constant, this shall be a syntax error.

// Correct declaration - bronze and gold are unsized
enum bit [3:0] {bronze='h3, silver, gold='h5} medal4;

// Correct declaration - bronze and gold sizes are redundant
enum bit [3:0] {bronze=4'h3, silver, gold=4'h5} medal4;

// Error in the bronze and gold member declarations
enum bit [3:0] {bronze=5'h13, silver, gold=3'h5} medal4d;

18 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

// Error in c declaration, requires at least 2 bits
enum bit [0:0] {a,b,c} alphabet;

Type checking of enumerated types used in assignments, as arguments and with operators is covered in

Section 3.10.3. Like C, there is no overloading of literals, so medal and medal4 cannot be defined in the same
scope, since they contain the same names.

3.10.1 Defining new data types as enumerated types
A type name can be given so that the same type can be used in many places.

typedef enum {NO, YES} boolean;
boolean myvar; // named type

3.10.2 Enumerated type ranges

A range of enumeration elements can be specified automatically, viathe following syntax:

Table 3-3: Enumeration element ranges

name Associates the next consecutive number with name.
name = C Associates the constant C to name
name [N] Generates N named constants in the sequence: name0, namel, ..., nameN-1. N must be an

integral constant

name[N] =C Optionally, a constant can be assigned to the generated named constants to associate that
constant to the first generated named constant; subsequent generated named constants are
associated consecutive values.

N must be an integral literal constant.

name [N:M] Creates a sequence of named constants starting with nameN and incrementing or decre-
menting until reaching named constant nameM.

name[N:M] =C Optionally, a constant can be assigned to the generated named constants to associate that
constant to the first generated named constants; subsequent generated named constants are
associated consecutive values.

N and M must be integral literal constants.

For example:
typedef enum { add=10, sub[5], jmp[6:8] } E1;

This exampl e defines the enumerated type E1, which assigns the number 10 to the enumerated named constant
add. It also creates the enumerated named constants sub0,sub1,sub2,sub3,and sub4, and assigns them the
values 11...15, respectively. Finally, the example creates the enumerated named constants jmpe,jmp7, and
jmp8, and assigns them the values 16-18, respectively.

enum { register[2] = 1, register[2:4] = 10 } vr;
The example above declares enumerated variable vr, which creates the enumerated named constants

register0 and register1, which are assigned the values 1 and 2, respectively. Next, it creates the enumer-
ated named constants register2, register3, and register4, and assigns them the values 10, 11, and 12.

3.10.3 Type checking
SystemVerilog enumerated types are strongly typed, thus, a variable of type enum cannot be directly assigned

a value that lies outside the enumeration set unless an explicit cast is used, or unless the enum variable is a
member of aunion. Thisis a powerful type-checking aid that prevents users from accidentally assigning non-

Copyright 2004 Accellera. All rights reserved. 19

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

existent values to variables of an enumerate type. Thisrestriction only appliesto an enumeration that is explic-
itly declared as atype. The enumeration values can still be used as constants in expressions, and the results can
be assigned to any variable of a compatible integral type.

Both the enumeration names and their integer values must be unique. The values can be set to any integral con-
stant value, or auto-incremented from an initial value of 0. It isan error to set two values to the same name, or
to set a value to the same auto-incremented value.

Enumerated variables are type-checked in assignments, arguments, and relational operators. Enumerated vari-
ables are auto-cast into integral values, but, assignment of arbitrary expressions to an enumerated variable
requires an explicit cast.

For example:
typedef enum { red, green, blue, yellow, white, black } Colors;

This operation assigns a unique number to each of the color identifiers, and creates the new data type Colors.
This type can then be used to create variables of that type.

Colors c;

c = green;

c = 1; // Invalid assignment

if (1 == ¢) // OK. ¢ is auto-cast to integer

In the example above, the value green isassigned to the variable ¢ of type colors. The second assignment is
invalid because of the strict typing rules enforced by enumerated types.

Casting can be used to perform an assignment of a different data type, or an out of range value, to an enumer-
ated type. Casting is discussed in Sections 3.10.4, 3.14 and 3.15.

The result of any operation on an enumeration variable after the variable has been assigned an out of range
value shall be undefined.

3.10.4 Enumerated types in numerical expressions

Elements of enumerated type variables can be used in numerical expressions. The value used in the expression
is the numerical value associated with the enumerated value. For example:

typedef enum { red, green, blue, yellow, white, black } Colors;

Colors col;
integer a, b;

a = blue * 3;
col = yellow;
b = col + green;

From the previous declaration, blue has the numerical value 2. This example assigns a the value of 6 (2*3),
and it assignsb avalue of 4 (3+1).

An enum variable or identifier used as part of an expression is automatically cast to the base type of the enum
declaration (either explicitly or using int as the default). An assignment to an enum variable from an expres-
sion other than the same type shall require a cast. Casting to an enum type shall cause a conversion of the
expression to its base type without checking the validity of the value (unless a dynamic cast is used as
described in Section 3.15).

typedef enum {Red, Green, Blue} Colors;
typedef enum {Mo,Tu,We,Th,Fr,Sa,Su} Week;
Colors C;

20 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
Week W;
int I;
C = Colors’ (C+1); // C is converted to an integer, then added to

// one, then converted back to a Colors type

C=C =+ 1; C++; C+=2; C = I; // Illegal because they would all be
// assignments of expressions without a cast

C

Colors’ (Su) ; // Legal; puts an out of range value into C

I =C + W; // Legal; C and W are automatically cast to int
SystemVerilog includes a set of specialized methods to enable iterating over the values of enumerated types.
3.10.4.1 first()
The prototype for the first () method is:

function enum first () ;
The first () method returns the value of the first member of the enumeration.
3.10.4.2 last()
The prototype for the 1ast () method is:

function enum last () ;
The 1ast () method returns the value of the last member of the enumeration.
3.10.4.3 next()
The prototype for thenext () methodis:

function enum next (int unsigned N = 1);
The next () method returns the Nth next enumeration value (default is the next one) starting from the current
value of the given variable. A wrap to the start of the enumeration occurs when the end of the enumeration is
reached. If the given value is not amember of the enumeration, the next () method returns the first member.
3.10.4.4 prev()
The prototype for the prev () methodis:

function enum prev(int unsigned N = 1);
Theprev () method returns the Nth previous enumeration value (default is the previous one) starting from the
current value of the given variable. A wrap to the end of the enumeration occurs when the start of the enumer-
ation is reached. If the given value is not a member of the enumeration, the prev () method returns the last
member.
3.10.4.5 num()
The prototype for the num () method is:

function int num() ;

The num () method returns the number of elementsin the given enumeration.

Copyright 2004 Accellera. All rights reserved. 21

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001

3.10.4.6 name()
The prototype for the name() method is:

function string name () ;

The name () method returns the string representation of the given enumeration value. If the given value is not
amember of the enumeration, the name () method returns the empty string.

3.10.4.7 Using enumerated type methods

The following code fragment shows how to display the name and value of all the members of an enumeration.

typedef enum { red, green, blue, yellow } Colors;
Colors ¢ = c.first;
forever begin
$display("%s : %d\n", c.name, c);
if(¢ == c.last) break;
c = c.next;
end

3.11 Structures and unions

data type::= I/l from Annex A.2.2.1

| struct_union [packed [signing]] { struct_union_member { struct_union_member } }
{ packed dimension}13

struct_union_member?’ ::=

{ attribute_instance} data type or_void list_of variable identifiers;
data type or_void ::= data _type|void
struct_union ::= struct | union [tagged]

Syntax 3-4—Structures and unions (excerpt from Annex A)
Structure and union declarations follow the C syntax, but without the optional structure tags beforethe* {*.
struct { bit [7:0] opcode; bit [23:0] addr; }IR; // anonymous structure

// defines variable IR
IR.opcode = 1; // set field in IR.

Some additional examples of declaring structure and unions are:

typedef struct {

bit [7:0] opcode;

bit [23:0] addr;
} instruction; // named structure type
instruction IR; // define variable

typedef union { int i; shortreal f; } num; // named union type

num n;
n.f = 0.0; // set n in floating point format

typedef struct {
bit isfloat;

22 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

union { int i; shortreal f; } n; // anonymous type
} tagged st; // named structure

tagged st al[9:0]1; // array of structures
A structure can be assigned as a whole, and passed to or from a function or task as awhole.
Section 2.8 discusses assigning initial valuesto a structure.

A packed structure consists of bit fields, which are packed together in memory without gaps. This means that
they are easily converted to and from bit vectors. An unpacked structure has an implementation-dependent
packing, normally matching the C compiler.

Like a packed array, a packed structure can be used as a whole with arithmetic and logical operators. The first
member specified is the most significant and subsequent members follow in decreasing significance. The
structures are declared using the packed keyword, which can be followed by the signed or unsigned key-
words, according to the desired arithmetic behavior. The default is unsigned:

struct packed signed ({
int a;
shortint b;
byte c;
bit [7:0] d;
} packl; // signed, 2-state

struct packed unsigned ({
time a;
integer b;
logic [31:0] c;
} pack2; // unsigned, 4-state

If any data type within a packed structure is 4-state, the whole structure is treated as 4-state. Any 2-state mem-
bers are converted asif cast. One or more bits of a packed structure can be selected asif it were a packed array,
assuming an [n-1:0] humbering:

packl [15:8] // ¢

Non-integer data types, such as real and shortreal, are not alowed in packed structures or unions. Nor are
unpacked arrays.

A packed structure can be used with a typedef.

typedef struct packed { // default unsigned
bit [3:0] GFC;
bit [7:0] VPI;
bit [11:0] VCI;
bit CLP;
bit [3:0] PT ;
bit [7:0] HEC;
bit [47:0] [7:0] Payload;
bit [2:0] filler;
} s_atmcell;

A packed union shall contain members that must be packed structures, or packed arrays or integer data types
all of the same size (in contrast to an unpacked union, where the members can be different sizes). This ensures
that you can read back a union member that was written as another member. A packed union can a so be used
asawhole with arithmetic and logical operators, and its behavior is determined by the signed or unsigned key-
word, the latter being the default. If a packed union contains a 2-state member and a 4-state member, the entire
union is4 state. Thereisan implicit conversion from 4-state to 2-state when reading and from 2-state to 4-state

Copyright 2004 Accellera. All rights reserved. 23

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

when writing the 2-state member.
For example, a union can be accessible with different access widths:

typedef union packed { // default unsigned
s_atmcell acell;
bit [423:0] bit_ slice;
bit [52:0] [7:0] byte slice;

} u_atmcell;

u_atmcell ul;

byte b; bit [3:0] nib;

b = ul.bit slice[415:408]; // same as b = ul.byte slice[51];
nib = ul.bit_slice [423:420]; // same as nib = ul.acell.GFC;

Note that writing one member and reading another is independent of the byte ordering of the machine, unlike a
normal union of normal structures, which are C-compatible and have members in ascending address order.

The signing of unpacked structuresis not allowed. The following declaration would be considered illegal:

typedef struct signed ({
int f1 ;
logic f2 ;
} sIllegalSignedUnpackedStructType; // illegal declaration

The qualifier tagged in a union declares it as a tagged union, which is a type-checked union. An ordinary
(untagged) union can be updated using a value of one member type and read as a value of another member
type, which isapotential typeloophole. A tagged union stores both the member value and atag, i.e., additional
bits representing the current member name. The tag and value can only be updated together consistently, using
a statically type-checked tagged union expression (Section 7.15). The member value can only be read with a
type that is consistent with the current tag value (i.e., member name). Thus, it isimpossible to store a value of
one type and (mis)interpret the bits as another type.

In addition to type safety, the use of member names as tags also makes code simpler and smaller than code that
has to track unions with explicit tags. Tagged unions can aso be used with pattern matching (Section 8.4),
which improves readability even further.

In tagged unions, members can be declared with type void, when all the information is in the tag itself, asin
the following example of an integer together with avalid bit:

typedef union tagged ({
void Invalid;
int Vvalid;

} Vint;

A value of vint typeiseither Invalid and contains nothing, or isvalid and contains an int. Section 7.15
describes how to construct values of thistype, and also describes how it isimpossible to read an integer out of
avint valuethat currently hasthe tnvalid tag.

Example:

typedef union tagged ({
struct {
bit [4:0] regl, reg2, regd;
} Add;
union tagged
bit [9:0] JmpU;
struct {
bit [1:0] cc;

24 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
bit [9:0] addr;
} Jmpc;
} Jmp;
} Instr;

A value of Instr typeiseither an add instruction, in which case it contains three 5-bit register fields, or itisa
Jmp instruction. In the latter case, it is either an unconditional jump, in which caseit contains a 10-bit destina-
tion address, or itisaconditional jump, in which case it contains a 2-bit condition-code register field and a 10-
bit destination address. Section 7.15 describes how to construct values of Instr type, and describes how, in
order to read the cc field, for example, the instruction must have opcode Jmp and sub-opcode Jmpc.

When the packed qualifier isused on atagged union, al the members must have packed types, but they do not
have to be of the same size. The (standard) representation for a packed tagged union is the following.

— Thesizeisaways equal to the number of bits needed to represent the tag plus the maximum of the sizes of
the members.

— The size of the tag is the minimum number of bits needed to code for all the member names (e.g., 5to 8
members would need 3 tag hits).

— Thetag bits are always left-justified (i.e., towards the most-significant bits).
— For each member, the member bits are always right-justified (i.e., towards the least significant bits).

— The bits between the tag bits and the member bits are undefined. In the extreme case of a void member,
only the tag is significant and all the remaining bits are undefined.

The representation scheme is applied recursively to any nested tagged unions.

Example: If the vint type definition had the packed qualifier, Invalid and valid values will have the fol-
lowing layouts, respectively:

1 32

0 XXXXXXX eer v o XXXXXXXXX
1 32

1 ..anintvaue...

tagisOfor Invalid, 1 for Valid

Copyright 2004 Accellera. All rights reserved. 25

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Example: If the Instr type had the packed qualifier, its values will have the following layouts:

1 5 5 5

‘o regl reg2 regd ‘ Add Instructions

1 2 1 2 10

1] xx [o] xx | | Jmp/JmpU Instructions
1 2 1 2 10

1] xx [1] cc | addr | Jmp/ImpC Instructions

Outer tag is O for Add, 1 for Jmp
Inner tag is O for JmpU, 1 for ImpC

3.12 Class

A classisacollection of data and a set of subroutines that operate on that data. The datain aclass are referred
to as class properties, and its subroutines are called methods. The class properties and methods, taken together,
define the contents and capabilities of a class instance or object.

class declaration ::= [/l from Annex A.1.3
[virtual] class| lifetime] class _identifier [parameter_port_list]
[extendsclass type[(list_of arguments)]];
{ class item}
endclass| : class_identifier]

Syntax 3-5—Classes (excerpt from Annex A)

The object-oriented class extension allows objects to be created and destroyed dynamically. Classinstances, or
objects, can be passed around via object handles, which add a safe-pointer capability to the language. An
object can be declared as an argument with direction input, output, inout, Or ref. In each case, the argu-
ment copied is the object handle, not the contents of the object.

A Classisdeclared using the class...endclass keywords. For example:

class Packet;

int address; // Properties are address, data, and crc
bit [63:0] data;
shortint crc;

Packet next; // Handle to another Packet
function new() ; // Methods are send and new
function bit send() ;

endclass : Packet

Any datatype can be declared as a class member. Classes are discussed in more detail in Section 11.

26 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

3.13 Singular and aggregate types

Data types are categorized as either singular or aggregate. A singular type shall be any data type except an
unpacked structure, union, or array (see Section 4 on arrays). An aggregate type shall be any unpacked struc-
ture, union, or array datatype. A singular variable or expression represents a single value, symbols, or handle.
Aggregate expressions and variables represent a set or collection of singular values. Integral types are always
singular even though they can be sliced into multiple singular values.

These categories are defined so that operators and functions can simply refer to these data types as a collective
group. For example, some functions recursively descend into an aggregate variable until reaching a singular
value, and then perform an operation on each singular value.

Note that although a class is a type, there are no variables or expressions of class type directly, only class

object handles which are singular. So classes need not be categorized in this manner (see Section 11 on
classes).

3.14 Casting

constant_cast ::= [/l from Annex A.8.4
casting_type’ (constant_expression)
| casting_type’ constant_concatenation
| casting_type’ constant_multiple_concatentation

cast ::=
casting_type’ (. expression)
| casting_type’ concatenation
| casting_type’ multiple_concatentation
casting_type::=simple _type| size| signing // from Annex A.2.2.1

simple_type ::=integer_type | non_integer_type| ps_type identifier

Syntax 3-6—casting (excerpt from Annex A)

A data type can be changed by using a cast (*) operation. The expression to be cast must be enclosed in
parentheses or within concatenation or replication braces and is self-determined.

int’ (2.0 * 3.0)
shortint’ {8’ hFA, 8'hCE}

A positive decimal number as a data type means a number of bits to change the size.
17/ (x - 2)

The signedness can a so be changed.
signed’ (x)

A user-defined type can be used.
mytype’ (£00)

The expression inside the cast must be an integral value when changing the size or signing. When changing the
size, the signing passes through unchanged. When changing the signing, the size passes through unchanged.

When casting to a predefined type, the prefix of the cast must be the predefined type keyword. When casting to
a user-defined type, the prefix of the cast must be the user-defined type identifier.

Copyright 2004 Accellera. All rights reserved. 27

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

When ashortreal isconverted to an int or to 32 bits, its value isrounded, asin Verilog. Therefore, the con-
version can lose information. To convert a shortreal to its underlying bit representation without a loss of
information, use $shortrealtobits as defined in Section 23.6. To convert from the bit representation of a
shortreal value into a shortreal, USe $bitstoshortreal asdefined in Section 23.6.

Structures can be converted to bits preserving the bit pattern, which means they can be converted back to the
same value without any loss of information. When unpacked data is converted to the packed representation,
the order of the data in the packed representation is such that the first field in the structure occupies the most
significant bits. The effect is the same as a concatenation of the data items (struct fields or array elements) in
order. The type of the elements in an unpacked structure or array must be valid for a packed representation in
order to be cast to any other type, whether packed or unpacked.

An explicit cast between packed typesis not required since they are treated asintegral values, but a cast can be
used by tools to perform stronger type checking.

The following example demonstrates how the sbits attribute is used to obtain the size of a structure in bits
(the $bits system function is discussed in Section 23.4), which facilitates conversion of the structure into a
packed array:

typedef struct {
bit isfloat;
union { int i; shortreal f; } n; // anonymous type

} tagged st; // named structure

typedef bit [$bits(tagged st) - 1 : 0] tagbits; // tagged st defined above
tagged st a [7:0]; // unpacked array of structures

tagbits t = tagbits’ (al3]); // convert structure to array of bits

al4] = tagged st’ (t); // convert array of bits back to structure

Notethat thebit datatypeloses X values. If these are to be preserved, the 1ogic type should be used instead.
The size of aunionin bitsisthe size of itslargest member. The size of alogic in bitsis 1.

For compatibility, the Verilog functions $itor, $rtoi, $bitstoreal, $realtobits, $signed
$unsigned can also be used.

3.15 $cast dynamic casting

SystemVerilog provides the $cast system task to assign values to variables that might not ordinarily be valid
because of differing datatype. scast can be caled as either atask or afunction.

The syntax for scast is
function int S$cast(singular dest var, singular source exp);
or
task Scast(singular dest var, singular source exp);
The dest_var isthe variable to which the assignment is made.
The source_exp isthe expression that is to be assigned to the destination variable.
Use of scast as either atask or afunction determines how invalid assignments are handled.

When called asatask, $cast attemptsto assign the source expression to the destination variable. If the assign-
ment isinvalid, aruntime error occurs and the destination variable is left unchanged.

28 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

When called as a function, $cast attempts to assign the source expression to the destination variable, and
returns 1 if the cast is legal. If the cast fails, the function does not make the assignment and returns 0. When
called asafunction, no runtime error occurs, and the destination variable is left unchanged.

It'simportant to note that scast performs arun-time check. No type checking is done by the compiler, except
to check that the destination variable and source expression are singulars.

For example:

typedef enum { red, green, blue, yellow, white, black } Colors;
Colors col;
Scast(col, 2 + 3);

This example assigns the expression (5 => black) to the enumerated type. Without scast, or the static
compile-time cast described below, this type of assignment isillegal.

The following example shows how to use the $cast to check if an assignment will succeed:

if (! Scast(col, 2 + 8)) // 10: invalid cast
$display("Error in cast");

Alternatively, the preceding examples can be cast using a static SystemVerilog cast operation: For example:
col = Colors’ (2 + 3);

However, thisis a compile-time cast, i.e, a coercion that always succeeds at run-time, and does not provide for
error checking or warn if the expression lies outside the enumeration values.

Allowing both types of casts gives full control to the user. If users know that it is safe to assign certain expres-
sions to an enumerated variable, the faster static compile-time cast can be used. If users need to check if the
expression lies within the enumeration values, it is not necessary to write alengthy switch statement manually,
the compiler automatically providesthat functionality viathe $cast function. By allowing both types of casts,
users can control the time/safety trade-offs.

Note: $cast issimilar to the dynamic_cast function available in C++, but, $cast allows usersto check if
the operation will succeed, whereas dynamic_cast aways raises a C++ exception.

3.16 Bit-stream casting

Type casting can also be applied to unpacked arrays and structs. It is thus possible to convert freely between
bit-stream types using explicit casts. Types that can be packed into a stream of bits are called bit-stream types.
A bit-stream typeis atype consisting of the following:

— Any integral, packed, or string type

— Unpacked arrays, structures, or classes of the above types

— Dynamically-sized arrays (dynamic, associative, or queues) of any of the above types

This definition is recursive, so that, for example, a structure containing a queue of int is a bit-stream type.

Assuming a is of bit-stream type source t and B is of bit-stream type dest_t, it islegal to convert A into B
by an explicit cast:

B = dest _t’ (A);

The conversion from a of type source_t to B of type dest_t proceedsin two steps:

1) Conversion from source_t to ageneric packed value containing the same number of bits as source_t.
If source_t contains any 4-state data, the entire packed value is 4-state; otherwise, it is 2-state.

Copyright 2004 Accellera. All rights reserved. 29

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

2) Conversion from the generic packed value to dest_t. If the generic packed value is a 4-state type and
parts of dest_t designate 2-state types then those partsin dest_t are assigned asif cast to a 2-dtate.

When adynamic array, queue, or string is converted to the packed representation, the item at index 0 occupies
the most significant bits. When an associative array is converted to the packed representation, items are packed
in index-sorted order with the first indexed element occupying the most significant bits.

Both source t and dest_t can include one or more dynamically sized datain any position (for example, a
structure containing a dynamic array followed by a queue of bytes). If the source type, source_t, includes
dynamically-sized variables, they are all included in the bit-stream. If the destination type, dest_t, includes
unbounded dynamically-sized types, the conversion process is greedy: compute the size of the source_t,
subtract the size of the fixed-size dataitems in the destination, and then adjust the size of the first dynamically
sized item in the destination to the remaining size; any remaining dynamically-sized items are | eft empty.

For the purposes of abit-stream cast, a string is considered a dynamic array of bytes.

Regardless of whether the destination type contains only fixed-size items or dynamically-sized items, datais
extracted into the destination in left-to-right order. It is thus legal to fill a dynamically-sized item with data
extracted from the middle of the packed representation.

If both source t and dest_t are fixed sized unpacked types of different sizes then a cast generates a com-
pile-time error. If source t or dest_t contain dynamically-sized types then a difference in their sizes will
generate an error either at compile time or run time, as soon as it is possible to determine the size mismatch.
For example:

// Illegal conversion from 24-bit struct to int (32 bits) - compile time error
struct {bit[7:0] a; shortint b;} a;

int b = int’ (a);

// Illegal conversion from 20-bit struct to int (32 bits) - run time error

struct {bit al[$]; shortint b;} a = {{1,2,3,4}, 67};
int b = int’ (a);

// Illegal conversion from int (32 bits) to struct dest t (25 or 33 bits),
// compile time error

typedef struct {byte al[$]; bit b;} dest t;

int a;

dest t b = dest _t’ (a);

Bit-stream casting can be used to convert between different aggregate types, such as two structure types, or a
structure and an array or queue type. This conversion can be useful to model packet data transmission over
serial communication streams. For exampl e, the code below uses bit-stream casting to model a control packet
transfer over a data stream:

typedef struct {
shortint address;
reg [3:0] code;
byte command [2];

} Control;

typedef bit Bits [36:1];

Control p;
Bits streaml[$];

P = ... // initialize control packet
stream = {stream, Bits’ (p)} // append packet to unpacked queue of bits

Control g;

30 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
g = Control’ (stream[0]) ; // convert stream back to a Control packet
stream = stream[1:3]; // remove packet from stream

The following example uses bit-stream casting to model a data packet transfer over a byte stream:

typedef struct {
byte length;
shortint address;
byte payloadl];
byte chksum;

} packet;

The above type defines a generic data packet in which the size of the payload field is stored in the length field.
Below isafunction that randomly initializes the packet and computes the checksum.

function Packet genPkt () ;
Packet p;

void’ (randomize(p.address, p.length, p.payload)
with { p.length > 1 && p.payload.size == p.length });
p.chksum = p.payload.xor () ;
return p;
endfunction

The byte stream is modeled using a queue, and a bit-stream cast is used to send the packet over the stream.
typedef byte channel typel[$];
channel type channel;

channel = {channel, channel type’ (genPkt())};

And the code to receive the packet:

Packet p;

int size;

size = channel[0] + 4;

p = Packet’ (channel[0 : size - 1]); // convert stream to Packet
channel = channel[size, $ 1; // remove packet data from stream

Copyright 2004 Accellera. All rights reserved. 31

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Section 4
Arrays

4.1 Introduction (informative)

An array isacollection of variables, al of the same type, and accessed using the same name plus one or more
indices.

In C, arrays are indexed from 0 by integers, or converted to pointers. Although the whole array can be initial-
ized, each element must be read or written separately in procedural statements.

In Verilog-2001, arrays are indexed from left-bound to right-bound. If they are vectors, they can be assigned as
asingle unit, but not if they are arrays. Verilog-2001 allows multiple dimensions.

In Verilog-2001, all datatypes can be declared as arrays. The reg, wire and al other net types can also have a
vector width declared. A dimension declared before the object nameisreferred to as the “ vector width” dimen-
sion. The dimensions declared after the object name are referred to as the “array” dimensions.

reg [7:0] rl [1:256]; // [7:0] is the vector width, [1:256] is the array size

SystemVerilog uses the term “packed array” to refer to the dimensions declared before the object name (what
Verilog-2001 refers to as the vector width). The term “unpacked array” is used to refer to the dimensions
declared after the object name.

bit [7:0] c1; // packed array
real u [7:0]; // unpacked array

SystemVerilog enhances packed arrays by allowing multiple dimensions. SystemVerilog adds the ability to
procedurally change the size of one of the dimensions of an unpacked array. Fixed-size unpacked arrays can be
multi-dimensional and have fixed storage allocated for all the elements of the array. Each dimension of an
unpacked array can be declared as having a fixed or un-fixed size. A dynamic array allocates storage for ele-
ments at runtime along with option of changing the size of one of its dimensions. An associative array alo-
cates storage for elements individually as they are written. Associative arrays can be indexed using arbitrary
datatypes. A queue type of array grows or shrinks to accommodate the number elements written to the array at
runtime.

4.2 Packed and unpacked arrays

A packed array is a mechanism for subdividing a vector into subfields which can be conveniently accessed as
array elements. Consequently, a packed array is guaranteed to be represented as a contiguous set of bits. An
unpacked array may or may not be so represented. A packed array differs from an unpacked array in that, when
apacked array appears as aprimary, it istreated as a single vector.

If apacked array is declared as signed, then the array viewed as a single vector shall be signed. The individual
elements of the array are unsigned unless they are of a named type declared as signed. A part-select of a
packed array shall be unsigned.

Packed arrays allow arbitrary length integer types, so a 48 bit integer can be made up of 48 bits. These integers
can then be used for 48 hit arithmetic. The maximum size of a packed array can be limited, but shall be at |east
65536 (219) bits.

Packed arrays can only be made of the single bit types (bit, logic, reg, wire, and the other net types) and
recursively other packed arrays and packed structures.

Integer types with predefined widths cannot have packed array dimensions declared. These types are: byte,

shortint, int, longint, and integer. An integer type with a predefined width can be treated as a single
dimension packed array. The packed dimensions of these integer types shall be numbered down to O, such that

32 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

the right-most index is 0.

byte c2; // same as bit [7:0] c2;
integer il; // same as logic signed [31:0] i1;

Unpacked arrays can be made of any type. SystemVerilog enhances fixed-size unpacked arrays in that in addi-
tion to all other variable types, unpacked arrays can also be made of object handles (see Section 11.4) and
events (see Section 13.5).

SystemVerilog accepts a single number, as an alternative to arange, to specify the size of an unpacked array,
likeC. Thatis, [size] becomesthesameas [0:size-1]. For example:

int Array[8] [32]; isthesameas. int Array[0:7][0:31];

The following operations can be performed on al arrays, packed or unpacked. The examples provided with
these rules assume that A and B are arrays of the same shape and type.

— Reading and writing the array, eg., A = B

— Reading and writing adlice of the array, eg., A[i:§] = B[i:]]

— Reading and writing a variable slice of the array, e.9., A[x+:c] = Bly+:c]
— Reading and writing an element of the array, e.g., A[i] = BI[i]
— Equality operations on the array or dlice of the array, e.g. A==B, A[i:j] != B[i:]]

The following operations can be performed on packed arrays, but not on unpacked arrays. The examples pro-
vided with these rules assume that A isan array.

— Assignment from an integer, eg.,A = 8/11111111;

— Treatment as an integer in an expression, e.g., (A + 3)

If an unpacked array is declared as signed, then this applies to the individual elements of the array, since the
whole array cannot be viewed as a single vector.

When assigning to an unpacked array, the source and target must be arrays with the same number of unpacked
dimensions, and the length of each dimension must be the same. Assignment to an unpacked array is done by
assigning each element of the source unpacked array to the corresponding element of the target unpacked
array. Note that an element of an unpacked array can be a packed array.

For the purposes of assignment, a packed array is treated as a vector. Any vector expression can be assigned to
any packed array. The packed array bounds of the target packed array do not affect the assignment. A packed
array cannot be directly assigned to an unpacked array without an explicit cast.

4.3 Multiple dimensions

Like Verilog memories, the dimensions following the type set the packed size. The dimensions following the
instance set the unpacked size.

bit [3:0] [7:0] joe [1:10]; // 10 entries of 4 bytes (packed into 32 bits)
can be used asfollows:

joe[9] = joel8] + 1; // 4 byte add
joe[7]1[3:2] = joel6][1:0]; // 2 byte copy

Note that the dimensions declared following the type and before the name ([3:0] [7: 0] inthe preceding dec-

laration) vary more rapidly than the dimensions following the name ([1:10] in the preceding declaration).
When used, the first dimensions ([3:01) follow the second dimensions ([1:101).

Copyright 2004 Accellera. All rights reserved. 33

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

In alist of dimensions, the right-most one varies most rapidly, as in C. However a packed dimension varies
more rapidly than an unpacked one.

bit [1:10] fool [1:5]; // 1 to 10 varies most rapidly; compatible with
Verilog-2001 arrays
bit foo2 [1:5] [1:10]; // 1 to 10 varies most rapidly, compatible with C

bit [1:5] [1:10] foo3; // 1 to 10 varies most rapidly

bit [1:5] [1:6] foo4 [1:7] [1:8]; // 1 to 6 varies most rapidly, followed by
1 to 5, then 1 to 8 and then 1 to 7

Multiple packed dimensions can a so be defined in stages with typedef.

typedef bit [1:5] bsix;
bsix [1:10] foo5; // 1 to 5 varies most rapidly

Multiple unpacked dimensions can also be defined in stages with typedet.

typedef bsix mem type [0:3]; // array of four ’‘bsix’ elements
mem_type bar [0:7]; // array of eight ’‘mem_type’ elements

When the array is used with a smaller number of dimensions, these have to be the slowest varying ones.

bit [9:0] foo6;
foo6 = fool[2]; // a 10 bit quantity.

Asin Verilog-2001, a comma-separated list of array declarations can be made. All arraysin the list shall have
the same data type and the same packed array dimensions.

bit [7:0] [31:0] foo7 [1:5] [1:10], foo8 [0:255]; // two arrays declared
If an index expression is out of the address bounds or if any bit in the addressis X or Z, then the index shall be
invalid. Theresult of reading from an array with aninvalid index shall return the default uninitialized value for
the array element type. Writing to an array with an invalid index shall perform no operation. |mplementations
can generate awarning if an invalid index occurs for aread or write operation of an array.

4.4 Indexing and slicing of arrays

An expression can select part of a packed array, or any integer type, which is assumed to be numbered down to
0.

SystemVerilog uses the term “part select” to refer to a selection of one or more contiguous bits of a single
dimension packed array. Thisis consistent with the usage of the term “part select” in Verilog.

reg [63:0] data;
reg [7:0] byte2;
byte2 = data([23:16]; // an 8-bit part select from data

SystemVerilog uses the term “dlice” to refer to a selection of one or more contiguous el ements of an array. Ver-
ilog only permits a single element of an array to be selected, and does not have aterm for this selection.

An single element of a packed or unpacked array can be selected using an indexed name.
bit [3:0] [7:0] 3; // j is a packed array

byte k;
k = j[2]; // select a single 8-bit element from j

34 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

One or more contiguous elements can be selected using a slice name. A dice name of a packed array is a
packed array. A slice name of an unpacked array is an unpacked array.

bit busA [7:0] [31:0] ; // unpacked array of 8 32-bit vectors
int busB [1:0]; // unpacked array of 2 integers
busB = busA[7:6]; // select a slice from busA

The size of the part select or slice must be constant, but the position can be variable. The syntax of Verilog-
2001 is used.

int i = bitvec[j +: KkI]; // k must be constant.
int alx:y], bly:zl, e;
a = {blc -: 4], e}; // d must be constant

Slices of an array can only apply to one dimension, but other dimensions can have single index valuesin an
expression.

4.5 Array querying functions

SystemVerilog provides new system functions to return information about an array. These are: $left,
$right, $low, $high, $increment, $size, and $dimensions. These functions are described in
Section 23.7.

4.6 Dynamic arrays

A dynamic array is one dimension of an unpacked array whose size can be set or changed at runtime. The
space for adynamic array doesn't exist until the array is explicitly created at runtime.

The syntax to declare adynamic array is:
data type array name [];

wheredata_type isthe datatype of the array elements. Dynamic arrays support the same types as fixed-size
arrays.

For example:
bit [3:0] nibblel[]; // Dynamic array of 4-bit vectors
integer mem|[] ; // Dynamic array of integers

Thenew [] operator is used to set or change the size of the array.
The size () built-in method returns the current size of the array.

The delete () built-in method clears al the elements yielding an empty array (zero size).

4.6.1 new[]

The built-in function new allocates the storage and initializes the newly allocated array elements either to their
default initial value or to the values provided by the optional argument.

The prototype of the new function is:

Copyright 2004 Accellera. All rights reserved. 35

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

blocking_assignment ::= [l from Annex A.6.2

| hierarchical_dynamic_array variable identifier = dynamic_array new

dynamic_array_new ::= // from Annex A.2.4
new [expression] [(expression)]

Syntax 4-1—Declaration of dynamic array new (excerpt from Annex A)

[expression]:
The number of elementsin the array. Must be a non-negative integral expression.

(expression):
Optional. An array with which to initialize the new array. If it is not specified, the elements of the newly
allocated array are initialized to their default value. This array identifier must be a dynamic array of the
same data type as the array on the left-hand side, but it need not have the same size. If the size of this
array isless than the size of the new array, the extra elements shall be initialized to their default value. If
the size of thisarray is greater than the size of the new array, the additional elements shall be ignored.

This argument is useful when growing or shrinking an existing array. In this situation, the value of
(expression) isthe same as the |l eft-hand side, so the previous val ues of the array elements are preserved.

For example:
integer addr(]; // Declare the dynamic array.
addr = new([100]; // Create a 100-element array.

// Double the array size, preserving previous values.
addr = new[200] (addr) ;

The new operator follows the SystemVerilog precedence rules. Since both the square brackets [1 and the

parenthesis () have the same precedence, the arguments to this operator are evaluated left to right:
[expression] first, and (expression) second.

4.6.2 size()
The prototype for the size () methodis:
function int size();
The size () method returns the current size of adynamic array, or zero if the array has not been created.

int j = addr.size;
addr = new|[addr.size() * 4] (addr); // quadruple addr array

Note: The size method isequivalent to $1ength(addr, 1).
4.6.3 delete()
The prototype for the delete () methodis:
function void delete() ;
Thedelete () method emptiesthe array, resulting in a zero-sized array.

int ab [] = new[N]; // create a temporary array of size N

36 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
// use ab
ab.delete; // delete the array contents
$display("%d", ab.size); // prints 0

4.7 Array assignment

Assigning to a fixed-size unpacked array requires that the source and the target both be arrays with the same
number of unpacked dimensions, and the length of each dimension be the same. Assignment is done by assign-
ing each element of the source array to the corresponding element of the target array, which requires that the
source and target arrays be of compatible types. Compatible types are types that are assignment compati-
ble.Assigning fixed-size unpacked arrays of unequal size to one ancther shall result in atype check error.

int A[10:1]; // fixed-size array of 10 elements
int B[0:9]; // fixed-size array of 10 elements
int C[24:1]; // fixed-size array of 24 elements
A = B; // ok. Compatible type and same size
A = C; // type check error: different sizes

An array of wires can be assigned to an array of variables having the same number of unpacked dimensions
and the same length for each of those dimensions, and vice-versa.

wire [31:0] W [9:0];
assign W = A;
initial #10 B = W;

A dynamic array can be assigned to a one-dimensional fixed-size array of a compatible type, if the size of the
dynamic array is the same as the length of the fixed-size array dimension. Unlike assigning with a fixed-size
array, this operation requires a run-time check that can result in an error.

int A[100:1]; // fixed-size array of 100 elements

int B[] = new[100]; // dynamic array of 100 elements

int C[] = new([8]; // dynamic array of 8 elements

A = B; // OK. Compatible type and same size
A = C; // type check error: different sizes

A dynamic array or a one-dimensional fixed-size array can be assigned to a dynamic array of a compatible
type. In this case, the assignment creates a new dynamic array with a size equal to the length of the fixed-size
array. For example:

int A[100:1]; // fixed-size array of 100 elements
int BI[]; // empty dynamic array

int C[] = new([8]; // dynamic array of size 8

B = A; // ok. B has 100 elements

B = C; // ok. B has 8 elements

The last statement above is equivalent to:
B = new[C.size] (C);

Similarly, the source of an assignment can be a complex expression involving array slices or concatenations.
For example:

string d[1:5] = { ngn, npn, wgn, ngn, nen }1'

string pl];
p = { dl[1:3], "hello", d[4:5] };

Copyright 2004 Accellera. All rights reserved. 37

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

[T TR L TR L RT3 LT R TR 1]

The preceding exampl e creates the dynamic array p with contents: “a”, “b”, “c”, “hello”, “d”", “e

4.8 Arrays as arguments

Arrays can be passed as arguments to tasks or functions. The rulesthat govern array argument passing by value
are the same as for array assignment (see Section 10.4). When an array argument is passed by value, a copy of
the array is passed to the called task or function. Thisistruefor al array types: fixed-size, dynamic, or associa-
tive.

Note that unsized dimensions can occur in dynamic arrays and in formal arguments of import DPI functions. If
one dimension of aformal is unsized, then any size of the corresponding dimension of an actual is accepted.

For example, the declaration:
task fun(int a[3:1] [3:1]);
declarestask fun that takes one argument, atwo dimensional array with each dimension of sizethree. A call to

fun must pass atwo dimensional array and with the same dimension size 3 for all the dimensions. For exam-
ple, given the above description for fun, consider the following actuals:

int b[3:1][3:1]; // OK: same type, dimension, and size

int b[1:3][0:2]; // OK: same type, dimension, & size (different ranges)
reg b[3:1][3:1]; // OK: assignment compatible type

event b[3:1] [3:1]; // error: incompatible type

int b[3:1]; // error: incompatible number of dimensions

int b[3:1][4:1]; // error: incompatible size (3 vs. 4)

A subroutine that accepts a one-dimensional fixed-size array can also be passed a dynamic array of a compati-
ble type of the same size.

For example, the declaration:
task bar(string arr[4:1]);

declares atask that accepts one argument, an array of 4 strings. This task can accept the following actual argu-
ments:

string bl4:1]; // OK: same type and size
string b[5:2]; // OK: same type and size (different range)
string b[] = newl[4]; // OK: same type and size, requires run-time check

A subroutine that accepts adynamic array can be passed a dynamic array of a compatible type or a one-dimen-
sional fixed-size array of a compatible type

For example, the declaration:
task foo(string arr|[]);

declares a task that accepts one argument, a dynamic array of strings. This task can accept any one-dimen-
sional array of strings or any dynamic array of strings.

An import DPI function that accepts a one-dimensional array can be passed a dynamic array of a compatible

type and of any sizeif formal is unsized, and of the same sizeif formal is sized. However, adynamic array can-
not be passed as an argument if formal is an unsized output.

38 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

4.9 Associative arrays

Dynamic arrays are useful for dealing with contiguous collections of variables whose number changes dynam-
ically. When the size of the collection is unknown or the data space is sparse, an associative array is a better
option. Associative arrays do not have any storage alocated until it is used, and the index expression is not
restricted to integral expressions, but can be of any type.

An associative array implements alookup table of the elements of its declared type. The datatypeto be used as
an index serves as the lookup key, and imposes an ordering.

The syntax to declare an associative array is.
data type array id [index type];

where:
— data_type isthe data type of the array elements. Can be any type allowed for fixed-size arrays.
— array_id isthe name of the array being declared.

— index_type is the data-type to be used as an index, or *. If * is specified, then the array is indexed by any
integral expression of arbitrary size. An index type restricts the indexing expressions to a particular type.

Examples of associative array declarations are:

integer i array[*]; // associative array of integer (unspecified
// index)
bit [20:0] array blstring]; // associative array of 21-bit vector, indexed

// by string

event ev_array[myClass]; // associative array of event indexed by class
// myClass

Array elements in associative arrays are allocated dynamically; an entry is created the first time it is written.
The associative array maintains the entries that have been assigned values and their relative order according to
the index data type. Associative array elements are unpacked, meaning that other than copying or comparing
arrays, you must select an individual element out of the array before using it in most expressions.

4.9.1 Wildcard index type

Example: int array name [*];

Associative arrays that specify awildcard index type have the following properties:

— The array can be indexed by any integral data type. Since the indices can be of different sizes, the same
numerical value can have multiple representations, each of a different size. SystemVerilog resolves this
ambiguity by detecting the number of leading zeros and computing a unique length and representation for
every value.

— Non-integral index types areillegal and result in atype check error.

— A 4-state Index containing X or Z isinvalid.

— Indices are unsigned.

— Indexing expressions are self-determined; signed indices are not sign extended.
— A string literal index is auto-cast to a bit-vector of equivalent size.

— Theordering is numerical (smallest to largest).

Copyright 2004 Accellera. All rights reserved. 39

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001
4.9.2 String index

Example: int array name [string];

Associative arrays that specify a string index have the following properties:

— Indices can be strings or string literals of any length. Other types areillegal and shall result in atype check
error.

— Anempty string “” index isvalid.

— Theordering is lexicographical (lesser to greater).

4.9.3 Class index

Example: int array name [some Class];

Associative arrays that specify aclass index have the following properties:

— Indices can be objects of that particular type or derived from that type. Any other typeisillegal and shall
result in atype check error.

— A null index isvalid.

— Theordering is deterministic but arbitrary.

4.9.4 Integer (or int) index

Example: int array name [integer];

Associative arrays that specify an integer index have the following properties:
— Indices can be any integral expression.

— Indices are signed.

— A 4-state index containing X or Z isinvalid.

— Indices smaller than integer are sign extended to 32 bits.

— Indices larger than integer are truncated to 32 bits.

— Theordering is signed numerical.

4.9.5 Signed packed array

Example: typedef bit signed [4:1] Nibble;
int array name [Nibble 1;

Associative arrays that specify a signed packed array index have the following properties:
— Indices can be any integral expression.

— Indices are signed.

— Indices smaller than the size of the index type are sign extended.

— Indices larger than the size of the index type are truncated to the size of the index type.

— Theordering is signed numerical.

4.9.6 Unsigned packed array or packed struct

Example: typedef bit [4:1] Nibble;
int array name [Nibble 1;

40 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
Associative arrays that specify an unsigned packed array index have the following properties:

— Indices can be any integral expression.

— Indices are unsigned.

— A 4-state Index containing X or Z isinvalid.

— Indices smaller than the size of the index type are zero filled.

— Indices larger than the size of the index type are truncated to the size of the index type.

— Theordering is numerical.
If an invalid index (i.e., 4-state expression has X's) is used during a read operation or an attempt is made to

read a non-existent entry then awarning isissued and the default initial value for the array typeis returned, as
shown in the table below:

Table 4-1: Value read from a nonexistent associative array entry

Typeof Array Value Read
4-state integral type X
2-state integral type 0
enumeration first element in the enumeration
string
class null
event null

If aninvalid index is used during a write operation, the write isignored and awarning is issued.

4.9.7 Other user defined types
Example:

typedef struct {real R; int I[*];} Unpkt;
int array name [Unpkt];

In general, associative arrays that specify an index of any type have the following properties:

— Declared Indices must have the equality operator defined for its type to be legal. This includes al of the
dynamically sized types aslega Index types

— AnIndex expression that is or contains X or Z in any of its elementsisinvalid.

— An Index expression that is or contains an empty value or null for any of it elements does not make the
Index invalid.

— If therelational operator is defined for the Index type, the ordering is as defined in the preceding sections.
If not, the relative ordering of any two entries in such an associative array can vary, even between succes-
sive runs of the same tool. However, the relative ordering must remain the same within the same simulation
run while no Indices have been added or deleted.

4.10 Associative array methods

In addition to the indexing operators, several built-in methods are provided that allow users to analyze and

Copyright 2004 Accellera. All rights reserved. 41

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

manipulate associative arrays, as well asiterate over itsindices or keys.

4.10.1 num()
The syntax for the num () method is:
function int num() ;
The num () method returns the number of entriesin the associative array. If the array is empty, it returns 0.

int imem[*];

imem[2'b3 1 = 1;

imem[16'hffff] = 2;

imem[4b’1000] = 3;

$display("%0d entries\n", imem.num); // prints "3 entries"

4.10.2 delete()
The syntax for the delete () methodis:
function void delete([input index]);
Where index is an optional index of the appropriate type for the array in question.

If the index is specified, then the delete () method removesthe entry at the specified index. If the entry to be
deleted does not exist, the method issues no warning.

If the index is not specified, then the delete () method removesall the elementsin the array.

int map[string];
map["hello"] = 1;

map["sad"] = 2;

map["world"] = 3;

map.delete("sad"); // remove entry whose index is "sad" from "map"
map.delete; // remove all entries from the associative array "map"

4.10.3 exists()
The syntax for the exists () method is:
function int exists(input index);
Where index is an index of the appropriate type for the array in question.

Theexists () function checksif an element exists at the specified index within the given array. It returns 1 if
the element exists, otherwise it returns 0.

if (map.exists("hello"))

map["hello"] += 1;
else
map["hello"] = 0;

4.10.4 first()
The syntax for the first () method is:

function int first(ref index);

42 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Where index is an index of the appropriate type for the array in question.

The first () method assigns to the given index variable the value of the first (smallest) index in the associa-
tive array. It returns O if the array is empty, and 1 otherwise.

string s;
if (map.first(s))
$display("First entry is : map[%$s] = %0d\n", s, mapl[s]);
4.10.5 last()

The syntax for the 1ast () method is:
function int last(ref index);
Where index is an index of the appropriate type for the array in question.

The 1ast () method assigns to the given index variable the value of the last (largest) index in the associative
array. It returns O if the array is empty, and 1 otherwise.

string s;
if (map.last(s))
$display("Last entry is : map[%s] = %0d\n", s, mapls]);

4.10.6 next()
The syntax for thenext () method is:
function int next(ref index);
Where index is an index of the appropriate type for the array in question.
The next () method finds the entry whose index is greater than the given index. If there is a next entry, the

index variable is assigned the index of the next entry, and the function returns 1. Otherwise, index is
unchanged, and the function returns 0.

string s;
if (map.first(s))
do
$display("%s : %d\n", s, mapl[s 1);

while (map.next(s));

4.10.7 prev()
The syntax for the prev () method is:

function int prev(ref index);
Where index is an index of the appropriate type for the array in question.
Theprev () function finds the entry whose index is smaller than the given index. If there is a previous entry,
the index variable is assigned the index of the previous entry, and the function returns 1. Otherwise, the index
is unchanged, and the function returns 0.

string s;

if (map.last(s))

do
$display("%s : %d\n", s, mapl[s 1);

Copyright 2004 Accellera. All rights reserved. 43

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

while (map.prev(s));
If the argument passed to any of the four associative array traversal methods £irst, last, next, and prev is
smaller than the size of the corresponding index, then the function returns—1 and shall copy only as much data
as can fit into the argument. For example:

string aal[*];

byte ix;
int status;
aal 1000] = "a";

status = aa.first(ix);
// status is -1
// ix is 232 (least significant 8 bits of 1000)

4.11 Associative array assignment

Associative arrays can be assigned only to another associative array of a compatible type and with the same
index type. Other types of arrays cannot be assigned to an associative array, hor can associative arrays be
assigned to other types of arrays, whether fixed-size or dynamic.

Assigning an associative array to another associative array causes the target array to be cleared of any existing
entries, and then each entry in the source array is copied into the target array.

4.12 Associative array arguments

Associative arrays can be passed as arguments only to associative arrays of a compatible type and with the
same index type. Other types of arrays, whether fixed-size or dynamic, cannot be passed to subroutines that
accept an associative array as an argument. Likewise, associative arrays cannot be passed to subroutines that

accept other types of arrays.

Passing an associative array by value causes alocal copy of the associative array to be created.

4.13 Associative array literals

Associative array literals usethe {index:value} syntax with an optional default index. Like all other arrays,
an associative array can be written one entry at a time, or the whole array contents can be replaced using an
array literal.

concatenation ::= /I from Annex A.8.1

| { array_member_label : expression { , array_member_label : expression} }
array_member_label ::=
default
| type_identifier
| constant_expression

Syntax 4-2—Associative array literal syntax (excerpt from Annex A)
For example:
// an associative array of strings indexed by 2-state integers,

// default is "foo".
string words [int] = {default: "foo"};

44 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

// an associative array of 4-state integers indexed by strings, default is -1.
integer table [string] = {"Peter":20, "Paul":22, "Mary":23, default:-1 };

If adefault value is specified, then reading a non-existent element shall yield the specified default value. Oth-
erwise, the default initial valueis as described in Table 4-1 shall be returned.

4.14 Queues

A queue is a variable-size, ordered collection of homogeneous elements. A queue supports constant time
access to al its elements as well as constant time insertion and removal at the beginning or the end of the
gueue. Each element in aqueueisidentified by an ordinal number that represents its position within the queue,
with O representing the first, and ¢ representing the last. A queue is analogous to a one-dimensional unpacked
array that grows and shrinks automatically. Thus, like arrays, queues can be manipulated using the indexing,
concatenation, slicing operator syntax, and equality operators.

Queues are declared using the same syntax as unpacked arrays, but specifying ¢ as the array size. The maxi-
mum size of a queue can be limited by specifying its optional right bound (last index).

variable_dimens ont2 ;= /l from Annex A.2.5
{ sized_or_unsized dimension }
| associative_dimension
| queue_dimension
queue_dimension ::=[$[: constant_expression]]

Syntax 4-3—Declaration of queue dimension (excerpt from Annex A)

constant_expression must evaluate to a positive integer value.

For example:
byte glls$]; // A queue of bytes
string names|[$] = { "Bob" }; // A queue of strings with one element
integer Q[$] = { 3, 2, 7 }; // An initialized queue of integers
bit g2[$:255]; // A queue whose maximum size is 256 bits

The empty array literal {} is used to denote an empty queue. If an initial value is not provided in the declara-
tion, the queue variable isinitialized to the empty queue.

4.14.1 Queue Operators

Queues support the same operations that can be performed on unpacked arrays, and using the same operators
and rules except as defined below:

int gl$] = { 2, 4, 8 };
int p[3];
int e, pos;

e = glo0]; // read the first (left-most) item

e = qls]; // read the last (right-most) item

glo] = e; // write the first item

P = g; // read and write entire queue (copy)
a=1{aq 6}; // insert ‘6’ at the end (append 6)
a=1{e q}; // insert ‘e’ at the beginning (prepend e)
q = qgll:38]; // delete the first (left-most) item

Copyright 2004 Accellera. All rights reserved. 45

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001
qg = qgl0:$-11; // delete the last (right-most) item
qg=qgll:$-11; // delete the first and last items
a={}; // clear the gueue (delete all items)

// insert ’'e’ at position pos
// insert ’'e’ after position pos

g = { glo:pos-11, e, glpos,s] }
g = { qlo:pos]l, e, glpos+1,s3] }

Unlike arrays, the empty queue, {}, is a valid queue and the result of some queue operations. The following
rules govern queue operators:
— Q[a : b]yieldsaqueuewithb - a + 1 elements.
— Ifa > btheng[a:b] yieldsthe empty queue {}.
— Q[n : n] yieldsaqueue with oneitem, the oneat positionn. Thus, Q[n : n] === { Q[n] }.
— Ifnliesoutsideg’srange (n < 0 or n > $) thenQ[n:n] yieldsthe empty queue {}.
— If either a or b are 4-state expressions containing X or Z values, it yields the empty queue { }.
— 0l a : b 1 wherea < oisthesameasQ[0 : b].
— 0l a : b 1] whereb > $isthesameasqQl a : $].

— Aninvalid index value (i.e., a 4-state expression with X's or Z's, or a value that lies outside 0...$) shall
cause a read operation (e = QI[n]) to return the default initial value for the type of queue item (as
described in Table 4-1).

— Aninvalidindex (i.e., a4-state expression with X'sor Z's, or avaue that lies outside 0...$+1) shall cause a
write operation to be ignored and a run-time warning to be issued. Note that writingto o [$+1] islegal.

— A queue declared with aright bound [$:N] shall be limited to the indexes O through N (its maximum size
will be N+1). An index that lies outside these limits shall be invalid, therefore, a write operation past the
end of the queue shall be ignored and issue awarning. The warning can be issued at either compile time or
run time, as soon asit is possible to determine that the index lies outside the queue limit.

NOTE: Queues and dynamic arrays have the same assignment and argument passing semantics.

4.14.2 Queue methods

In addition to the array operators, queues provide several built-in methods.

4.14.2.1 size()

The prototype for the size() method is:
function int size();

The size() method returns the number of items in the queue. If the queue is empty, it returns O.
for (int j = 0; j < g.size; j++) S$display(qljl);

4.14.2.2 insert()

The prototype of the insert() method is:
function void insert (int index, queue type item);

The insert() method inserts the given item at the specified index position.

— Q.insert (i, e) isequivaentto:o = {Q[0:i-1]1, e, QI[i, %]}

46 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001

4.14.2.3 delete()
The prototype of the delete() method is:
function void delete (int index) ;

The delete() method del etes the item at the specified index position.
— Q.delete (i) isequivalentto: 9 = {Q[0:i-11, QI[i+1,$]1}

4.14.2.4 pop_front()
The prototype of the pop_front() method is:
function queue type pop front () ;

The pop_front() method removes and returns the first element of the queue.

— e = Q.pop_front () isequivalentto:e = Q[0]; Q = QI[1, %]
4.14.2.5 pop_back()
The prototype of the pop_back() method is:

function queue type pop back() ;

The pop_back() method removes and returns the last element of the queue.
— e = Q.pop back () isequivalentto:e = Q[$]; Q = Q[0,$-1]

4.14.2.6 push_front()
The prototype of the push_front() method is:

function void push front (queue type item);

The push_front() method inserts the given element at the front of the queue.

— Q.push front (e) isequivalentto: o = {e, 0}
4.14.2.7 push_back()
The prototype of the push_back() method is:

function void push back(queue type item) ;

The push_back() method inserts the given element at the end of the queue.
— Q.push back (e) isequivalentto:o = {Q, e}

4.15 Array manipulation methods

SystemVerilog 3.1a

SystemVerilog provides several built-in methods to facilitate array searching, ordering, and reduction.

The general syntax to call these array methodsis:

Copyright 2004 Accellera. All rights reserved.

47

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

array_method_call ::= // not in Annex A
expression . array_method_name { attribute_instance } [(list_of _arguments)]
[with (‘expression)]

Syntax 4-4—array method call syntax (not in Annex A)

The optional with clause accepts an expression enclosed in parenthesis. In contrast, the with clause used by
the randomize method (see Section 12.6) accepts a set of constraints enclosed in braces.

4.15.1 Array Locator Methods

Array locator methods operate on any unpacked array, including queues, but their return type is aqueue. These
locator methods allow searching an array for elements (or their indexes) that satisfy a given expression. Array
locator methods traverse the array in an unspecified order. The optional with expression should not include
any side effects; if it does, the results are unpredictable.

The prototype of these methodsiis:

function array type [$] locator method (array type iterator = item);
// same type as the array

or

function int or index type [$] index locator method(array type iterator = item);
// index type

Index locator methods return a queue of int for all arrays except associative arrays, which return a queue of
the same type as the associative index type.

If no elements satisfy the given expression or the array is empty (in the case of a queue or dynamic array) then
an empty queueis returned, otherwise these methods return a queue containing all items that satisfy the expres-
sion. Index locator methods return a queue with the indexes of al items that satisfy the expression. The
optional expression specified by the with clause must eval uate to a boolean value.

Locator methods iterate over the array elements, which are then used to evaluate the expression specified by
thewith clause. The iterator argument optionally specifies the name of the variable used by the with expres-
sion to designate the element of the array at each iteration. If it is not specified, the name item is used by
default. The scope for the iterator name is the with expression.

The following locator methods are supported (the with clause is mandatory) :

— find () returnsall the elements satisfying the given expression

— find index () returnstheindexes of al the elements satisfying the given expression

— find first () returnsthe first element satisfying the given expression

— find first_ index () returnstheindex of thefirst element satisfying the given expression
— find last () returnsthelast element satisfying the given expression

— find last_index () returnstheindex of the last element satisfying the given expression

For the following locator methods the with clause (and its expression) can be omitted if the relational opera-
tors(<, >, ==)aredefined for the element type of the given array. If awith clauseis specified, therelational
operators (<, >, ==) must be defined for the type of the expression.

— min () returnsthe element with the minimum value or whose expression evaluates to a minimum

— max () returnsthe element with the maximum value or whose expression evaluates to a maximum

48 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001

— unique () returnsal elements with unique values or whose expression is unique

SystemVerilog 3.1a

— unique_index () returnstheindexesof all elementswith unique values or whose expression is unique

Examples:

string SA[10], gsl[$];
int IA[*], qgil$];

//
gi

//
gi

//
gs

//
gs

/7
gi

//
gi

//
gs

//
gs

//
gs

Find

= IA.

Find

= IA

Find

Find

Find

Find

Find

= SA.

Find
= SA

Find

= SA.

all items greater than 5
find(x) with (x > 5);

indexes of all items equal to 3

.find index with (item ==) ;

first item equal to Bob

.find first with (item == "Bob");
last item equal to Henry

.find last(y) with (y == "Henry");
index of last item greater than Z
.find last index(s) with (s > "Z");
smallest item

.min;

string with largest numerical value

max with (item.atoi);
all unique strings elements
.unique;

all unique strings in lower-case
unique(s) with (s.tolower);

4.15.2 Array ordering methods

Array ordering methods can reorder the elements of one-dimensional arrays or queues.

The general prototype for the ordering methodsiis:

function void ordering method (array type iterator

The following ordering methods are supported:

— reverse () reversesall the elements of the array (packed or unpacked). Specifying awith clause shall be
acompiler error.

— sort () sortsthe unpacked array in ascending order, optionally using the expression in the with clause.
Thewith clause (and its expression) is optional when the relational operators are defined for the array ele-
ment type.

— rsort () sortsthe unpacked array in descending order, optionally using the expression in the with clause.
Thewith clause (and its expression) is optional when the relational operators are defined for the array ele-
ment type.

— shuffle () randomizes the order of the elements in the array. Specifying awith clause shall be a com-
piler error.

Copyright 2004 Accellera. All rights reserved.

49

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001
Examples:

string s[] = { "hello", "sad", "world" };

s.reverse; // s becomes { "world", "sad", "hello" };

logic [4:1] b = 4'bXZ01;

b.reverse; // b becomes 4’'bl0ZX
int gl$] = { 4, 5, 3, 1 };
q.sort; // q becomes { 1, 3, 4, 5 }

struct { byte red, green, blue } c [512];
c.sort with (item.red); // sort c using the red field only
c.sort(x) with (x.blue << 8 + x.green); // sort by blue then green

4.15.3 Array reduction methods

Array reduction methods can be applied to any unpacked array to reduce the array to a single value. The
expression within the optional with clause can be used to specify the item to use in the reduction.

The prototype for these methods is:
function expression or array type reduction method (array type iterator = item)

The method returns a single value of the same type as the array element type or, if specified, the type of the
expression in the with clause. The with clause can be omitted if the corresponding arithmetic or boolean
reduction operation is defined for the array element type. If awith clauseis specified, the corresponding arith-
metic or boolean reduction operation must be defined for the type of the expression.

The following reduction methods are supported:

— sum () returnsthe sum of all the array elements, or if awith clauseis specified, returns the sum of the val-
uesyielded by evaluating the expression for each array element.

— product () returnsthe product of al the array elements, or if awith clauseis specified, returns the prod-
uct of the values yielded by evaluating the expression for each array element.

— and () returnsthe bit-wise AND (&) of al the array elements, or if awith clauseis specified, returnsthe
bit-wise AND of the values yielded by evaluating the expression for each array element

— or () returnsthe bit-wise OR (|) of al the array elements, or if awith clause is specified, returns the bit-
wise OR of the values yielded by evaluating the expression for each array element

— xor () returnsthelogical XOR (”) of al the array elements, or if awith clause is specified, returns the
XOR of the values yielded by evaluating the expression for each array element

Examples:
byte b[1 = { 1, 2, 3, 4 };
int y;
y = b.sum ; // y becomes 10 => 1 + 2 + 3 + 4
y = b.product ; // v becomes 24 => 1 * 2 * 3 * 4
y = b.xor with (item + 4); // y becomes 12 => 5 * 6 ©~ 7 * 8

4.15.4 lterator index querying
The expressions used by array manipulation methods sometimes need the actual array indexes at each itera-

tion, not just the array element. The index method of an iterator returns the index value of the specified dimen-
sion. The prototype of the index method is:

50 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

function int or index type index (int dimension = 1)

The array dimensions are numbered as defined in Section 23.7: The dowest varying is dimension 1. Succes-
sively faster varying dimensions have sequentially higher dimension numbers. If the dimension is not speci-
fied, the first dimension is used by default

The return type of the index method is an int for all array iterator items except associative arrays, which
returns an index of the same type as the associative index type.

For example:
int arr[]

int mem[9:0] [9:0], mem2[9:0] [9:0];
int g[s];

// find all items equal to their position (index)
g = arr.find with (item == item.index);

// find all items in mem that are greater than corresponding item in mem2
g = mem.find(x) with (x > mem2[x.index(1)] [x.index(2)]);

Copyright 2004 Accellera. All rights reserved. 51

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Section 5
Data Declarations

5.1 Introduction (informative)

There are severa forms of data in SystemVerilog: literals (see Section 2), parameters (see Section 21), con-
stants, variables, nets, and attributes (see Section 6)

Verilog 2001 constants are literals, genvars parameters, localparams and specparams. Verilog 2001 also has
variables and nets. Variables must be written by procedural statements, and nets must be written by continuous
assignments or ports.

SystemVerilog extends the functionality of variables by allowing them to either be written by procedural state-
ments or driven by a single continuous assignment, similar to a wire. Since the keyword reg no longer
describes the users intent in many cases, the keyword logic is added as a more accurate description that is
equivalent to reg. Verilog-2001 has already deprecated the use of the term register in favor of variable.

SystemVerilog follows Verilog by requiring data to be declared before it is used, apart from implicit nets. The
rules for implicit nets are the same as in Verilog-2001.

A variable can be static (storage allocated on instantiation and never de-allocated) or automatic (stack storage
allocated on entry to a scope (such as atask, function or block) and de-allocated on exit). C has the keywords
static and auto. SystemVerilog follows Verilog in respect of the static default storage class, with automatic
tasks and functions, but allows static to override a default of automatic for a particular variable in such
tasks and functions.

5.2 Data declaration syntax

data_declaration®® ::= I from Annex A.2.1.3
[const][lifetime] variable _declaration
| type declaration
| package import_declaration
| virtual_interface declaration
variable declaration ::=
data type list_of variable decl_assignments;
lifetime ::= static | automatic

15). In adata_declaration that is not within the procedural context, it shall beillegal to use the automatic keyword

Syntax 5-1—Data declaration syntax (excerpt from Annex A)

5.3 Constants

Constants are named data variables which never change. There are three kinds of constants, declared with the
keywords localparam, specparam and const, respectively. All three can be initialized with aliteral.

localparam byte colonl = ":" ;
specparam int delay = 10 ; // specparams are used for specify blocks

const logic flag = 1 ;

A parameter or local parameter can only be set to an expression of literals, parameters or local parameters,
genvars, enumerated names, or a constant function of these. Hierarchical names are not allowed.

52 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

A specparam can also be set to an expression containing one or more specparams.

A static constant declared with the const keyword can only be set to an expression of literals, parameters,
local parameters, genvars, enumerated names, a constant function of these, or other constants. The parameters,
local parameters or constant functions can have hierarchical names because constants declared with the const

keyword are calculated after elaboration. An automatic constant declared with the const keyword can be set
to any expression that would be legal without the const keyword.

const logic option = a.b.c ;
A constant expression contains literals and other named constants.
An instance of aclass (an object handle) can aso be declared with the const keyword.

const class name object = new(5,3);
This meansthat the object acts like avariable that cannot be written. The arguments to the new method must be
constant expressions. The members of the object can be written (except for those members that are declared
const).
SystemVerilog enhancements t0 parameter and localparam constant declarations are presented in
Section 21. SystemVerilog does not change specparam constants declarations. A const form of constant dif-

fers from a 1localparam constant in that the localparam must be set during elaboration, whereas a const
can be set during simulation, such asin an automatic task.

5.4 Variables
A variable declaration consists of a data type followed by one or more instances.

shortint s1, s2[0:9];
A variable can be declared with an initializer, for example:

int 1 = 0;
In Verilog-2001, an initialization value specified as part of the declaration is executed as if the assignment
were made from aninitial block, after smulation has started. Therefore, the initialization can cause an event on
that variable at simulation time zero.
In SystemVerilog, setting the initial value of a static variable as part of the variable declaration (including static
class members) shall occur before any initial or always blocks are started, and so does not generate an
event. If an event is needed, an initial block should be used to assign the initial values.
Initial valuesin SystemVerilog are not constrained to simple constants; they can include run-time expressions,
including dynamic memory alocation. For example, a static class handle or a mailbox can be created and ini-
tialized by calling its new method (see Section 13.3.1), or static variables can be initialized to random values
by calling the $urandom system task. Thisrequires a special pre-initial pass at run-time.

The following table contains the default values for SystemVerilog variables.

Table 5-1: Default values

Type Default Initial value

4 dtate integral 'X

2 state integral "0

Copyright 2004 Accellera. All rights reserved. 53

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Table 5-1: Default values

Type Default Initial value
real, shortreal 0.0
Enumeration First value in the enumeration
string "1 (empty string)
event New event
class null
chandle (Opague handle) null

5.5 Scope and lifetime

Any data declared outside a module, interface, task, or function, is global in scope (can be used anywhere after
its declaration) and has a static lifetime (exists for the whole elaboration and simulation time).

SystemVerilog data declared inside a module or interface but outside a task, process or function is local in
scope and static in lifetime (exists for the lifetime of the module or interface). Thisis roughly equivalent to C
static data declared outside a function, whichislocal to afile.

Data declared in an automatic task, function or block has the lifetime of the call or activation and aloca scope.
Thisis roughly equivalent to a C automatic variable.

Data declared in a static task, function or block defaults to a static lifetime and alocal scope.

Note that in SystemVerilog, data can be declared in unnamed blocks as well as in named blocks. This datais
visible to the unnamed block and any nested blocks below it. Hierarchical references cannot be used to access
this data by name.

Verilog-2001 allows tasks and functions to be declared as automatic, making al storage within the task or
function automatic. SystemVerilog allows specific datawithin a static task or function to be explicitly declared
asautomatic. Data declared as automatic has the lifetime of the call or block, and isinitialized on each entry
to the call or block. The lifetime of a fork...join, fork...join any, Or fork...join none block shal
encompass the execution of all processes spawned by the block. The lifetime of a scope enclosing any
fork...join block includes the lifetime of the fork...join block.

SystemVerilog also allows data to be explicitly declared as static. Data declared to be static in an auto-
matic task, function or block has a static lifetime and a scope local to the block. This is like C static data
declared within afunction.

module msl;
int st0; // static
initial begin
int stl; //static
static int st2; //static
automatic int autol; //automatic
end
task automatic tl () ;
int auto2; //automatic
static int st3; //static
automatic int auto3; //automatic
endtask
endmodule

54 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

SystemVerilog adds an optional qualifier to specify the default lifetime of all variables declared in task, func-
tion or block defined within a module, interface or program (see Section 16). The lifetime qualifier is auto-
matic Or static. Thedefault lifetimeisstatic.

program automatic test ;

int 1i; // not within a procedural block - static
task foo(int a); // arguments and variables in foo are automatic
endtask

endmodule

Class methods and declared for loop variables are by default automatic, regardless of the lifetime attribute of
the scope in which they are declared. Classes are discussed in Section 11.

Note that automatic or dynamic variables cannot be written with nonblocking or continuous assignments.
Automatic variables and dynamic constructs—objects handles, dynamic arrays, associative arrays, strings, and
event variables—shall be limited to the procedural context.

See also Section 10 on tasks and functions.

5.6 Nets, regs, and logic

Verilog-2001 states that a net can be written by one or more continuous assignments, primitive outputs or
through module ports. The resultant value of multiple driversis determined by the resolution function of the
net type. A net cannot be procedurally assigned. If a net on one side of a port is driven by a variable on the
other side, a continuous assignment is implied. A force statement can override the value of a net. When
released, it returns to resolved value.

Verilog-2001 also states that one or more procedural statements can write to variables, including procedural
continuous assignments. The last write determines the value. A variable cannot be continuously assigned. The
force statement overrides the procedural assign statement, which in turn overrides the normal assignments. A
variable cannot be written through a port; it must go through an implicit continuous assignment to a net.

In SystemVerilog, all variables can now be written either by one continuous assignment, or by one or more
procedural statements, including procedural continuous assignments. It shall be an error to have multiple con-
tinuous assignments or a mixture of procedural and continuous assignments writing to any term in the expan-
sion of awritten longest static prefix of alogic variable (See Section 9.2.1 for the definition of the expansion
of alongest static prefix) . All datatypes can write through a port.

SystemVerilog variables can be packed or unpacked aggregates of other types. Multiple assignments made to
independent elements of a variable are examined individually. An assignment where the left-hand-side con-
tainsadiceistreated as asingle assignment to the entire slice. It shall be an error to have a packed structure or
array type written with a mixture of procedural and continuous assignments. Thus, an unpacked structure or
array can have one element assigned procedurally, and another element assigned continuously. And, each ele-
ment of a packed structure or array can each have a single continuous assignment. For example, assume the
following structure declaration:

struct {
bit [7:0] A;
bit [7:0] B;
byte C;

} abc;

The following statements are legal assignmentsto struct abc:
assign abc.C = sel ? 8'hBE : 8'hEF;

not (abc.A[0],abc.B[0]),

Copyright 2004 Accellera. All rights reserved. 55

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

(abc.A[1] ,abc.B[1]),
(abc.A[2] ,abc.B[2]),
(abc.A[3],abc.B[3])

always @(posedge clk) abc.B <= abc.B + 1;
The following additional statements areillegal assignmentsto struct abc:

// Multiple continuous assignments to abc.C
assign abc.C = sel ? 8'hDE : 8'hED;

// Mixing continuous and procedural assignments to abc.A
always @(posedge clk) abc.A[7:4] <= l!abc.B[7:4];

For the purposes of the preceding rule, a declared variable initialization or a procedural continuous assignment
is considered a procedural assignment. A force Statement is neither a continuous or procedural assignment. A
release Statement shall not change the variable until there is another procedural assignment, or shall sched-
ule are-evaluation of the continuous assignment driving it. A single force Or release Statement shall not be
applied to a whole or part of a variable that is being assigned by a mixture of continuous and procedural
assignments.

A continuous assignment is implied when a variable is connected to an input port declaration. This makes
assignmentsto a variable declared as an input port illegal. A continuous assignment isimplied when avariable
is connected to the output port of an instance. This makes procedural or continuous assignments to a variable
connected to the output port of an instanceillegal.

SystemVerilog variables cannot be connected to either side of an inout port. SystemVerilog introduces the con-
cept of shared variables across ports with the ref port type. See Section 18.12 (port connections) for more
information about ports and port connection rules.

The compiler can issue awarning if a continuous assignment could drive strengths other then sto, st1, stx,
or Hiz to avariable. In any case, SystemVerilog applies automatic type conversion to the assignment, and the
strength islost.

Note that a SystemVerilog variable cannot have an implicit continuous assignment as part of its declaration,
the way a net can. An assignment as part of the logic declaration is a variable initialization, not a continuous
assignment. For example:

wire w = vara & varb; // continuous assignment

logic v = consta & constb; // initial procedural assignment

logic vw; // no initial assignment
assign vw = vara & varb; // continuous assignment to a logic

real circ;
assign circ = 2.0 * PI * R; // continuous assignment to a real

5.7 Signal aliasing

The Verilog assign statement isaunidirectional assignment and can incorporate a delay and strength change.
To model a bidirectional short-circuit connection it is necessary to use the alias statement. The members of
an dias list are signal's whose bits share the same physical nets. The example below implements a byte order
swapping between bus 2 and bus B.

module byte swap (inout wire [31:0] A, inout wire [31:0] B);

alias {A[7:0],A[15:8],A[23:16],A[31:24]} = B;
endmodule

56 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

This example strips out the least and most significant bytes from afour byte bus:

module byte rip (inout wire [31:0] W, inout wire [7:0] LSB, MSB) ;
alias W[7:0] = LSB;
alias W[31:24] = MSB;

endmodule

Thebit overlay rules are the same as those for a packed union with the same member types. each member shall
be the same size, and connectivity is independent of the simulation host. The nets connected with an aias
statement must be type compatible, that is, they have to be of the same net type. For example, it isillegal to
connect awand net to awor net with an alias statement. Thisis a stricter rule than applied to nets joining at
ports because the scope of an aliasis limited and such connections are more likely to be a design error. Vari-
ables and hierarchical references cannot be used in alias statements. Any violation of these rules shall be
considered afatal error.

The same nets can appear in multiple alias statements. The effects are cumulative. The following two exam-
ples are equivalent. In either case, low12[11:4] and high12[7:0] sharethe same wires.

module overlap (inout wire [15:0] buslé, inout wire [11:0] lowl2, highl2);

alias busl6[11:0] = lowl2;
alias busl6[15:4] = highl2;
endmodule

module overlap (inout wire [15:0] buslé, inout wire [11:0] lowl2, highl2);
alias busl6é = {highl2, lowl2[3:0]};
alias highl2[7:0] = lowl2([11:4];
endmodule
To avoid errors in specification, it is not allowed to specify an alias from an individua signal to itself, or to
specify a given alias more than once. The following version of the code above would be illegal since the top
four and bottom four bits are the same in both statements:

alias busl6é = {(high12[11:8], lowl2};
alias buslé = {(highl2, lowl2[3:0]};

This alternativeis also illegal because the bits of bus1e6 are being aliased to itself:

alias buslé = {highl2, busl16[3:0]} = {busl6[15:12], lowl2};
Alias statements can appear anywhere modul e instance statements can appear. If an identifier that has not been
declared as a data type appearsin an alias statement, then an implicit net is assumed, following the same rules
as implicit nets for a module instance. The following example uses alias along with the automatic name
binding to connect pins on cells from different libraries to create a standard macro:

module 1libl dff (Reset, Clk, Data, Q, Q Bar);

endﬁé&ule

module 1lib2 dff (reset, clock, data, a, gbar);

endﬁé&ule

module 1ib3 dff (RST, CLK, D, Q, Q);

endﬁé&ule

macromodule my dff (rst, clk, d, g, g bar); // wrapper cell

input rst, clk, d;
output g, g bar;

Copyright 2004 Accellera. All rights reserved. 57

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

alias rst = Reset = reset = RST;

alias clk = Clk = clock = CLK;

alias d = data = D;

alias g = Q;

alias Q = g bar = Q Bar = gbar;

‘LIB DFF my dff (.*); // LIB DFF is any of 1libl dff, 1ib2 dff or 1lib3 dff
endmodule

Using a net in an alias statement does not modify its syntactic behavior in other statements. Aliasing is per-
formed at elaboration time and cannot be undone.

5.8 Type compatibility

Some SystemVerilog constructs and operations require a certain level of type compatibility for their operands
to be legal. There are four levels of type compatibility, formally defined here: Equivalent, Assignment Com-
patible, Cast Compatible, and Non-Equivalent.

Note that there is no category for identical types defined here because there is no construct in the SystemVer-
ilog language that requires it. For example, as defined below, int can be interchanged with bit signed
[0:31] wherever it is syntactically legal to do so. Users can define their own level of type identity by using
the stypename System function (see Section 23.3, Typename function), or through use of the PLI.

5.8.1 Equivalent Types

Two data types shall be defined as equivalent data types using the following inductive definition. If the two
data types are not defined equivalent using the following definition, then they shall be defined to be non-equiv-
alent.

1) Any built-in typeis equivalent to every other occurrence of itself, in every scope.

2) A simple typedef or type parameter override that renames a built-in or user defined type is equivalent to
that built-in or user defined type within the scope of the type identifier.

typedef bit node; // ’'bit’ and 'node’ are equivalent types
typedef typel type2; // 'typel’ and ’'type2’ are equivalent types

3) Ananonymous enum, struct, or union typeis equivalent to itself among variables declared within the same
declaration statement and no other types.

struct {int A; int B;} ABl, AB2; // AB1l, AB2 have equivalent types
struct {int A; int B;} AB3; // AB3 is not type equivalent to AB1

4) A typedef for an enum, unpacked struct, or unpacked union, or aclassis equivalent to itself and variables
declared using that type within the scope of the type identifier.

typedef struct {int A; int B;} AB t;
AB t ABl; AB_t AB2; // ABl and AB2 have equivalent types

typedef struct {int A; int B;} otherAB t;
otherAB t AB3; // AB3 is not type equivalent to ABl or AB2

5) Packed arrays, packed structures, and built-in integral types are equivalent if they contain the same number
of total bits, are either all 2-state or all 4-state, and are either al signed or all unsigned. Note that if any bit
of apacked structure or union is 4-state, the entire structure or union is considered 4-state.

typedef bit signed [7:0]BYTE; // equivalent to the byte type
typedef struct packed signed {bit[3:0] a, b;} uints;
// equivalent to the byte type

58 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

6) Unpacked array types are equivalent by having equivalent element types and identical shape. Shape is
defined as the number of dimensions and the number of elementsin each dimension, not the actual range
of the dimension.

bit [9:0] A[0:5];

bit [1:10] BI[6];

typedef bit [10:1] uintl0;

uintl0 C[6:1]; // A, B and C have equivalent types
typedef int anint[0:0]; // anint is not type equivalent to int

7) Explicitly adding signed or unsigned modifiers to a type that does not change its default signing, does not
create a non-equivalent type. Otherwise, the signing must match to have equivalence

typedef bit unsigned ubit; // type equivalent to bit

8) A typedef for an enum, unpacked struct, or unpacked union, or a class type declared in a package is always
equivalent to itself, regardless of the scope where the type isimported.

The scope of atype identifier includes the hierarchical instance scope. This means that each instance with user
defined types declared inside the instance creates a unique type. To have type equivalence among multiple
instances of the same module, interface, or program, atype must be declared at higher level in the compilation
unit scope than the declaration of the module, interface or program, or imported from a package.

The following example is assumed to be within one compilation unit, although the package declaration need
not be in the same unit:

package pl;
typedef struct {int A;} t 1;
endpackage

typedef struct {int A;} t_ 2;

module sub() ;

import pl:t 1;

parameter type t 3 = int;

parameter type t 4 = int;

typedef struct {int A;} t_5;

t 1 vl; t 2 v2; t 3 v3; t 4 v4; t 5 V5;
endmodule

module top() ;
typedef struct {int A
sub #(.t_3(t_6)) sl (
sub #(.t_3(t_6)) s2 (

initial begin
sl.vl = s2.v1l; // legal - both types from package pl (rule 8)
sl.v2 = s2.v2; // legal - both types from S$unit (rule 4)
sl.v3 = s2.v3; // legal - both types from top (rule 2)
sl.v4 = s2.v4; // legal - both types are int (rule 1)
s1.v5 = s2.v5; // illegal - types from sl and s2 (rule 4)

end

endmodule

5.8.2 Assighment Compatible
All equivalent types, and al non-equivalent types that have implicit casting rules defined between them are

assignment compatible types. For example, al integral types are assignment compatible. Conversion between
assignment compatible types can involve loss of data by truncation or rounding.

Copyright 2004 Accellera. All rights reserved. 59

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Compatibility can bein one direction only. For example, an enum can be converted to an integral type without
a cast, but not in the other way around. Implicit casting rules are defined in Section 3 Data Types, and
Section 7 Operators and Expressions.

5.8.3 Cast Compatible

All assignment compatible types, plus all non-equivalent types that have defined explicit casting rules are cast
compatible types. For example, an integral type requires a cast to be assigned to an enum.

Explicit casting rules are defined in Section 3 Data Types.

5.8.4 Type Incompatible

These are all the remaining non-equivalent types that have no defined implicit or explicit casting rules. Class
handles and chandles are type incompatible with all other types.

60 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 6
Attributes

6.1 Introduction (informative)
With Verilog-2001, users can add named attributes (properties) to Verilog objects, such as modules, instances,

wires, etc. Attributes can also be specified on the extended SystemVerilog constructs and are included as part
of the BNF (see Annex A). SystemVerilog a so defines a default data type for attributes.

6.2 Default attribute type

The default type of an attribute with no value isbit, with avalue of 1. Otherwise, the attribute takes the type
of the expression.

Copyright 2004 Accellera. All rights reserved. 61

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Section 7
Operators and Expressions

7.1 Introduction (informative)

The SystemVerilog operators are a combination of Verilog and C operators. In both languages, the type and
size of the operandsis fixed, and hence the operator is of afixed type and size. The fixed type and size of oper-
atorsis preserved in SystemVerilog. This alows efficient code generation.

Verilog does not have assignment operators or increment and decrement operators. SystemVerilog includes the
C assignment operators, such as +=, and the C increment and decrement operators, ++ and - -.

Verilog-2001 added signed nets and reg variables, and signed based literals. There is a difference in the rules
for combining signed and unsigned integers between Verilog and C. SystemVerilog uses the Verilog-2001
rules.

7.2 Operator syntax

assignment_operator ::= // from Annex A.6.2
=42 -2 *= 12| %= | &= | |5 | "= | <<= | >>= | <<<= | >>>=

conditional_expression ::= // from Annex A.8.3
cond_predicate ? { attribute _instance} expression : expression

unary_operator ::= I from Annex A.8.6
=& =& T

binary_operator ::=
H[- 1 111% |==|1= | === | 1= | =2= | 17= | && | ||| **

| <<= 1> [>= & [[|7 2= [>> | << | >>> | <<<
inc_or_dec_operator ::= ++ | --
unary_module path_operator ::=

P~ & =& [T~ 1 7
binary_module path_operator ::=

=== 1&& & [T [~

Syntax 7-1—Operator syntax (excerpt from Annex A)

7.3 Assignment operators

In addition to the simple assignment operator, =, SystemVerilog includes the C assignment operators and spe-
cia bitwise assignment operators: +=, -=, *=, /=, %=, &=, | =, "=, <<=, >>=, <<<=, and >>>=. An assignment
operator is semantically equivalent to a blocking assignment, with the exception that any left hand side index
expression is only evaluated once. For example:

alil+=2; // same as al[i] = ali] +2;
In SystemVerilog, an expression can include a blocking assignment, provided it does not have atiming control.
Note that such an assignment must be enclosed in parentheses to avoid common mistakes such as using a=b
for a==b, or a|=b for a! =b.

if ((a=b)) b = (a+=1);

62 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

The semantics of such an assignment expression are those of a function which evaluates the right hand side,
casts the right hand side to the left hand data type, stacks it, updates the left hand side and returns the stacked
value. The type returned is the type of the left hand side data type. If the left hand side is a concatenation, the
type returned shall be an unsigned integral value whose bit length is the sum of the length of its operands.

It shall beillegal to include an assignment operator in an event expression, in an expression within a proce-
dural continuous assignment, or in an expression that is not within a procedural statement.

SystemVerilog includes the C increment and decrement assignment operators ++i, --i, i++ and i--. These
do not need parentheses when used in expressions. These increment and decrement assignment operators
behave as blocking assignments.

The ordering of assignment operations relative to any other operation within an expression is undefined. An
implementation can warn whenever a variable is both written and read-or-written within an integral expression
or in other contexts where an implementation cannot guarantee order of evaluation. In the following example:

i = 10;
jo=di++ + (1 =1 - 1);

After execution, the value of 5 can be 18, 19, or 20 depending upon the relative ordering of the increment and
the assignment statements.
7.4 Operations on logic and bit types

When a binary operator has one operand of type bit and another of type 1ogic, theresult is of type logic. If
one operand is of type int and the other of type integer, the result is of type integer.

The operators 1= and == return an X if either operand contains an x or a z, asin Verilog-2001. Thisis con-
verted to a0 if theresult is converted to typebit, e.g. inan i £ statement.

The unary reduction operators (s ~& | ~| ~ ~*) can be applied to any integer expression (including packed
arrays). The operators shall return a single value of type 1ogic if the packed type isfour valued, and of type
bit if the packed typeistwo valued.

int i;

bit b = &i;

integer j;

logic ¢ = &j;

7.5 Wild equality and wild inequality

SystemVerilog 3.1 introduces the wild-card comparison operators, as described below.

Table 7-1: Wild equality and wild inequality operators

Operator Usage Description
=7= a=?=b aequalsb, X and Z values act aswild cards
17= al?>=b anot equal b, X and Z values act aswild cards

Thewild equality operator (=?=) and inequality operator (! ?=) treat X and Z valuesin agiven bit position asa
wildcard. A wildcard bit matches any bit value (0, 1,Z, or X) in the value of the expression being compared
against it.

Copyright 2004 Accellera. All rights reserved. 63

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

These operators compare operands bit for bit, and return a 1-bit self-determined result. If the operands to the
wild-card equality/inequality are of unequal bit length, the operands are extended in the same manner asfor the
case equality/inequality operators. If the relation istrue, the operator yieldsa 1. If the relation isfalse, it yields
a0.

Thethree types of equality (and inequality) operatorsin SystemVerilog behave differently when their operands
contain unknown values (X or Z). The == and ! = operatorsresult in X if any of their operands containsan X or
Z. The === and 1 == check the 4-state explicitly, therefore, X and Z values shall either match or mismatch,
never resulting in X. The =2= and ! ?= operatorstreat X or Z aswild cards that match any value, thus, they too
never result in X.

7.6 Real operators

Operands of type shortreal have the same operation restrictions as Verilog real operands. The unary oper-
ators ++ and -- can have operands of type real and shortreal (the increment or decrement is by 1.0). The
assignment operators +=, -=, *=, /= can also have operands of type real and shortreal.

If any operand, except before the ? in the ternary operator, is real, the result is real. Otherwise, if any oper-
and, except before the ?in the ternary operator, is shortreal, theresult is shortreal.

Real operands can also be used in the following expressions:

str.realval // structure or union member
realarray[intval]l // array element

7.7 Size

The number of bits of an expression is determined by the operands and the context, following the samerules as
Verilog. In SystemVerilog, casting can be used to set the size context of an intermediate value.

With Verilog, tools can issue a warning when the left and right hand sides of an assignment are different sizes.
Using the SystemVerilog size casting, these warnings can be prevented.

7.8 Sign

Therulesfor determining the signedness of SystemVerilog expression types shall be the same as those for Ver-
ilog. A shortreal converted to an integer by type coercion shall be signed.

7.9 Operator precedence and associativity
Operator precedence and associativity islisted in Table 7-2, below. The highest precedenceis listed first.

Table 7-2: Operator precedence and associativity

(O 2 B R left
+ - !~ & ~& | ~| % ~* "~ ++ -- (unary) right
* % left
* /0% left
+ - (binary) left
<< >> <<< >>> left
< <= > >= inside dist left

64 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Table 7-2: Operator precedence and associativity (continued)

== l= === l== =?= |[?= left

& (binary) left

A A A

~ ~ (binary) left

| (binary) |eft

&& left

I left

?: (conditional operator) right

-> right

= += -= *= /= %= &= = = <<= >>= <<<= >>>= := :/ <= | none

{r {{}3 concatenation

7.10 Built-in methods

SystemVerilog introduces classes and the method calling syntax, in which atask or function is called using the
dot notation (.):

object.task or function()

The object uniquely identifies the data on which the task or function operates. Hence, the method concept is
naturally extended to built-in typesin order to add functionality that traditionally was done via system tasks or
functions. Unlike system tasks, built-in methods are not prefixed with a $ since they require no special prefix
to avoid collisions with user-defined identifiers. Thus, the method syntax allows extending the language with-
out the addition of new keywords or cluttering the global name space with system tasks.

Built-in methods, unlike system tasks, cannot be redefined by users via PLI tasks. Thus, only functions that
users should not be allowed to redefine are good candidates for built-in method calls.

In general, abuilt-in method is preferred over a system task when a particular functionality appliesto all data
types, or it applies to a specific data type. For example:

dynamic_array.size, associative array.num, and string.len

These are all similar concepts, but they represent different things. A dynamic array has a size, an associative
array contains a given number of items, and a string has a given length. Using the same system task, such as
$length, for all of them would be less clear and intuitive.

A built-in method can only be associated with a particular datatype. Therefore, if some functionality isasim-
ple side effect (i.e., $stop Or $reset) oOr it operates on no specific data (i.e., $random) then a system task
must be used.

When afunction or task built-in method call specifies no arguments, the empty parenthesis, (), following the
task/function name is optional. This is also true for tasks or functions that require arguments, when all argu-

ments have defaults specified. For a method, this rule allows simple calls to appear as properties of the object
or built-in type. Similar rules are defined for functions and tasks in Section 10.4.5.

7.10.1 Built-in package

SystemVerilog provides a built-in package that contains system types (e.g., classes), variables, tasks and func-
tions. Users cannot insert additional declarations into the built-in package. The built-in package is implicitly

Copyright 2004 Accellera. All rights reserved. 65

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

wildcard imported into the compilation-unit scope of every compilation unit (see Section 18.3). Thus, declara-
tions in the built-in package are directly available in any other scope (like system tasks and functions) unless
they are redefined by user code.

built_in_data type::=[std::] data_type identifier /I not in Annex A
built_in_function_call ::=[std::] built_in_identifier /I not in Annex A

The package name std followed by the scope resolution operator : : can be used to unambiguously access
names in the built-in package. For example:

std: :sys task(); // unambiguously call the system provided sys task

Unlike system tasks and functions, tasks and functions in the built-in package need not be prefixed with a ¢ to
avoid collisions with user-defined identifiers. This mechanism allows functional extensions to the language in
a backward compatible manner, without the addition of new keywords or polluting local name spaces.

7.11 Static Prefixes

Informally, the “longest static prefix” of a select isthe longest part of the select for which an analysis tool has
known values following elaboration. This concept is used when describing implicit sensitivity lists (see Sec-
tion 9.2) and when describing error conditions for drivers of logic ports (see Section 5.6). The remainder of
this section defines what constitutes the “longest static prefix” of a select.

A field select is defined as a hierarchical name where the right-hand side of the last “.” hierarchy separator
identifies afield of avariable whose typeisastruct or union declaration. The field select prefix is defined
to be the left-hand side of final “.” hierarchy separator in afield select.

An indexing select is a single indexing operation. The indexing select prefix is either an identifier or, in the
case of a multidimensional select, another indexing select. Array selects, bit selects, part selects, and indexed
part selects are examples of indexing selects.

The definition of a static prefix isrecursive and is defined as follows:

1) anidentifier isastatic prefix

2) afield sdlectisadtatic prefix if the field select prefix is a static prefix

3) anindexing select isastatic prefix if theindexing select prefix is a static prefix and the select expressionis
aconstant expression.

The definition of the longest static prefix is defined as follows:
1) anidentifier that isnot thefield select prefix or indexing select prefix of an expression that isastatic prefix

2) afield select that is not the field select prefix or indexing select prefix of an expression that is a static
prefix

3) anindexing select that is not the field select prefix or indexing select prefix of an expression that is a static
prefix.

Examples:
localparam p = 7;
reg [7:0] m [5:1][5:1];

integer 1i;

m([1] [1] // longest static prefix is m[1]

66 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
m[p] [1] // longest static prefix is m[p] [1]
m[i] [1] // longest static prefix is m

7.12 Concatenation

Braces({ }) are used to show concatenation, asin Verilog. The concatenation is treated as a packed vector of
bits. It can be used on the left hand side of an assignment or in an expression.

logic logl, log2, log3;
{logl, log2, log3} = 3’'blll;
{logl, log2, log3} {1'b1, 1'b1, 1'bl}; // same effect as 3'blll

Software tools can generate awarning if the concatenation width on one side of an assignment is different than
the expression on the other side. The following examples can give warning of size mismatch:

bit [1:0] packedbits = {32’b1,32’bl}; // right hand side is 64 bits
int 1 = {1'bl, 1'bl}; //right hand side is 2 bits

Refer to Sections 2.7 and 2.8 for information on initializing arrays and structures .

SystemVerilog enhances the concatenation operation to allow concatenation of variables of type string. In gen-
eral, if any of the operandsis of type string, the concatenation is treated as a string, and all other arguments
are implicitly converted to the string type (as described in Section 3.7). String concatenation is not allowed
on the left hand side of an assignment, only as an expression.

string hello = "hello";

string s;

s = { hello, " ", "world" };

$display("%$s\n", s); // displays 'hello world'

s = { s, " and goodbye" };

$display("%$s\n", s); // displays 'hello world and goodbye'

The replication operator (also called a multiple concatenation) form of braces can also be used with variables
of type string. In the case of string replication, a non-constant multiplier is allowed.

int n = 3;
string s = {n { "boo " }};
$display("%s\n", s); // displays 'boo boo boo '

Note that unlike bit concatenation, the result of a string concatenation or replication is not truncated. Instead,
the destination variable (of type string) isresized to accommodate the resulting string.

7.13 Unpacked array expressions

Braces are also used for expressions to assign to unpacked arrays. Unlike in C, the expressions must match ele-
ment for element, and the braces must match the array dimensions. Each expression item shall be evaluated in
the context of an assignment to the type of the corresponding element in the array. This means that the follow-
ing examples do not give size warnings, unlike the similar assignments above:

bit unpackedbits [1:0] = {1,1}; // no size warning as bit can be set to 1
int unpackedints [1:0] = {1'bl, 1'bl}; // no size warning as int can be

// set to 1'bl

The syntax of multiple concatenations can be used for unpacked array expressions as well. Each replication
represents a single dimension.

Copyright 2004 Accellera. All rights reserved. 67

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

unpackedbits = {2 {y}} ; // same as {y, v}
int nl[1:21[1:3] = {2{{3{v}}}}; // same as {{y,v.v}. {v.v.v}}

SystemVerilog determines the context of the braces when used in the context of an assignment. If used in the
context of an assignment to an unpacked array, the braces represent an unpacked array literal or expression.
Outside the context of an assignment on the right hand side, an explicit cast must be used with the braces to
distinguish it from a concatenation.

Note an aggregate expression cannot be used as the target of an assignment. The following is considered ille-
gal:

logic [2:0] a [1:0];
logic [2:0] b ,c;

always {b,c} = a; // illegal assignment the braces are not determined to be
// an unpacked array expression

It can sometimes be useful to set array elementsto avalue without having to keep track of how many members
there are. This can be done with the default keyword:

initial unpackedints = {default:2}; // sets elements to 2

For more arrays of structures, it is useful to specify one or more matching type keys, asillustrated under struc-
ture expressions, below.

struct {int a; time b;} abkey[1:0];
abkey = {{a:1, b:2ns}, {int:5, time:Stime}};

When the braces include a type, or default key, the braces shall not be interpreted as a concatenation for both
packed and unpacked array types.

The rules for unpacked array matching are as follows:

— Anindex:value specifies an explicit value for akeyed element index. The valueis evaluated in the context
of an assignment to the indexed element and shall be castable to its type. It shall be an error to specify the
same index more than once in asingle array expression.

— For type:value, if the element or sub array type of the unpacked array is equivalent to this type, then
each element or sub array shall be set to the value. The value must be castable to the array element or sub
array type. Otherwise, if the unpacked array is multidimensional, then there is arecursive descent into each
sub array of the array using the rules in this section and the type and default keys. Otherwise, if the
unpacked array isan array of structures, thereis arecursive descent into each el ement of the array using the
rules for structure expressions and the type and default keys. If more than one type matches the same ele-
ment, the last value shall be used.

— For default:value, thiskey specifiesthe default value to use for each element of an unpacked array that
has not been covered by the earlier rules in this section. The value is evaluated in the context of each
assignment to an element covered by the default and must be castable to the array element type.

Every element shall be covered by one of these rules.

If the type key, default key, or replication operator is used on an expression with side effects, the number of
times that expression evaluates is undefined.

7.14 Structure expressions

A structure expression (packed or unpacked) can be built from member expressions using braces and commas,
with the members in declaration order. Replicate operators can be used to set the values for the exact number

68 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

of members. Each member expression shall be evaluated in the context of an assignment to the type of the cor-
responding member in the structure. It can also be built with the names of the members

module modl;
typedef struct {

int x;

int y;

} st;

st sl;
int k = 1;

initial begin

#1 sl = {1, 2+k}; // by position
#1 Sdisplay(sl.x, sl.y);
#1 sl = {x:2, y:3+k); // by name
#1 sdisplay(sl1);
#1 S$finish;
end
endmodule

It can sometimes be useful to set structure members to a value without having to keep track of how many
members there are, or what the names are. This can be done with the default keyword:

initial sl = {default:2}; // sets x and y to 2
The {member:value} Or {data type: default value} Syntax can also be used:
ab abkey[1:0] = {{a:1, b:1.0}, {int:2, shortreal:2.0}};

Note that the default keyword applies to members in nested structures or elements in unpacked arrays in
structures. In fact, it descends the nesting to a built-in type or a packed array of them.

struct {
int A;
struct
int B, C;
} BC1, BC2;
}
ABC = {A:1, BCl1:{B:2, C:3}, BC2:{B:4,C:5}};

DEF

{default:10};

To deal with the problem of members of different types, a type can be used as the key. This overrides the
default for members of that type:

typedef struct {
logic [7:0] a;

bit b;
bit signed [31:0] c;
string s;
} sa;
sa s2;
initial s2 = {int:1, default:0, string:""}; // set all to 0 except the

// array of bits to 1 and
// string to ""

Copyright 2004 Accellera. All rights reserved. 69

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Similarly, an individual member can be set to override the general default and the type default:
initial #10 sl = {default:'1, s : ""}; // set all to 1 except s to ""

SystemVerilog determines the context of the braces when used in the context of an assignment. If used in the
context of an assignment to an unpacked structure, the braces represent an unpacked structure literal or expres-
sion. Outside the context of an assignment to an aggregate type, an explicit cast must be used with the braces to
distinguish it from a concatenation. When the braces include a label, type, or default key, the braces shall not
be interpreted as a concatenation for both packed and unpacked structure types.

The matching rules are as follows:

— A member:value: specifies an explicit value for a named member of the structure. The named member
must be at the top level of the structure—a member with the same name in some level of substructure shall
not be set. The value must be castable to the member type and is evaluated in the context of an assignment
to the named member, otherwise an error is generated.

— The type:value specifies an explicit value for afield in the structure which is equivalent to the type and
has not been set by a field name key above. If the same type key is mentioned more than once, the last
valueisused. The valueis evaluated in the context of an assignment to the matching type.

— Thedefault:value appliesto membersthat are not matched by either member name or type key and are
not either structures or unpacked arrays. The value is evaluated in the context of each assignment to a
member by the default and must be castable to the member type, otherwise an error is generated. For
unmatched structure members, the type and default specifiers are applied recursively according to the rules
in this section to each member of the substructure. For unmatched unpacked array members, the type and
default keys are applied to the array according to the rules for unpacked arrays.

Every member must be covered by one of these rules.

If the type key, default key, or replication operator is used on an expression with side effects, the number of
times that expression evaluates is undefined.

7.15 Tagged union expressions and member access

expression ::= // from Annex A.8.3

| tagged union_expression
tagged_union_expression ::=
tagged member_identifier [expression]

Syntax 7-2—Tagged union syntax (excerpt from Annex A)
A tagged union expression (packed or unpacked) is expressed using the keyword tagged followed by atagged
union member identifier, followed by an expression representing the corresponding member value. For void
members the member value expression is omitted.
Example:
typedef union tagged ({
void Invalid;
int Vvalid;
} Vint;

VInt vil, vi2;

70 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
vil = tagged Valid (23+34); // Create Valid int
vi2 = tagged Invalid; // Create an Invalid value

In the tagged union expressions below, the expressions in braces are structure expressions (Section 7.14).

typedef union tagged ({
struct {
bit [4:0] regl, reg2, regd;
} Add;
union tagged
bit [9:0] JmpU;
struct {
bit [1:0] cc;
bit [9:0] addr;
} JmpC;
} Jmp;
} Instr;

Instr i1, 1i2;

// Create an Add instruction with its 3 register fields

il = (e
? tagged Add { el, 4, ed }; // struct members by position
tagged Add { reg2:e2, regd:3, regl:19 }); // by name (order irrelevant)

// Create a Jump instruction, with "unconditional" sub-opcode
il = tagged Jmp (tagged JmpU 239) ;

// Create a Jump instruction, with "conditional" sub-opcode
i2 = tagged Jmp (tagged JmpC { 2, 83 }); // inner struct by position
i2 = tagged Jmp (tagged JmpC { cc:2, addr:83 }); // by name

The type of atagged union expression must be known from its context (e.g., it is used in the right-hand side of
an assignment to a variable whose type is known, or it ishasacast, or it is used inside another expression from
which its type is known). The expression evaluates to a tagged union value of that type. The tagged union
expression can be completely type-checked statically: the only member names allowed after the tagged key-
word are the member names for the expression type, and the member expression must have the corresponding
member type.

An uninitialized variable of tagged union type shall be undefined. This includes the tag bits. A variable of
tagged union type can be initialized with atagged union expression provided the member value expressionisa
legal initializer for the member type.

Members of tagged unions can be read or assigned using the usual dot-notation. Such accesses are completely
type-checked, i.e., the value read or assigned must be consistent with the current tag. In genera, this can
reguire a runtime check. An attempt to read or assign a value whose type is inconsistent with the tag resultsin
aruntime error.
All the following examples are legal only if theinstruction variable instr currently hastag add:

X = 1l1.Add.regl;

il.Aadd = {19, 4, 3};
il.Add.reg2 = 4;

7.16 Aggregate expressions

Unpacked structure and array variables, literas, and expressions can all be used as aggregate expressions. A
multi-element dlice of an unpacked array can also be used as an aggregate expression.

Copyright 2004 Accellera. All rights reserved. 71

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Aggregate expressions can be copied in an assignment, through a port, or as an argument to a task or function.
Aggregate expressions can also be compared with equality or inequality operators. To be copied or compared,
the type of an aggregate expression must be assignment compatible. See Section 5.8.2 Assignment compatible

types.

7.17 Operator overloading

There are various kinds of arithmetic that can be useful: saturating, arbitrary size floating point, carry save etc.
It is convenient to use the normal arithmetic operators for readability, rather than relying on function calls.

overload declaration ::= [/l from Annex A.2.8
bind overload_operator function data_type function_identifier (overload proto formals) ;
overload_operator =+ | ++ |—|——|* |** |/ |% |==|!=|<|<=|>|>=|=

overload proto formals::=data type{, data type}

Syntax 7-3—Operator overloading syntax (excerpt from Annex A)

The overload declaration allows the arithmetic operators to be applied to data types that are normally illegal
for them, such as unpacked structures. It does not change the meaning of the operators for those types where it
islegal to apply them. This means that such code does not change behavior when operator overloading is used.

The overload declaration links an operator to afunction prototype. The arguments are matched, and the type of
the result is then checked. Multiple functions can have the same arguments and different return types. If no
expected type exists because the operator isin a self-determined context, then a cast must be used to select the
correct function. Similarly if more than one expected typeis possible, due to nested operators, and could match
more than one function, a cast must be used to select the correct function.

An expected result type existsin any of the following contexts:
— Right hand side of an assignment or assignment expression
— Actual input argument of atask or function call

— Input port connection of a module, interface or program
— Actual parameter to amodule, interface, program or class
— Relational operator with unambiguous comparison

— Inside acast
For example, suppose there is a structure type float:

typedef struct {
bit sign;
bit [3:0] exponent;
bit [10:0] mantissa;
} float;

The + operator can be applied to this structure by invoking a function as indicated in the overloading declara-
tions below:

bind + function float faddif (int, float) ;
bind + function float faddfi(float, int);
bind + function float faddrf (real, float);
bind + function float faddrf (shortreal, float);
bind + function float faddfr(float, real);
bind + function float faddfr (float, shortreal);

72 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
bind + function float faddff (float, float);
bind + function float fcopyf (float); // unary +
bind + function float fcopyi(int); // unary +
bind + function float fcopyr(real); // unary +
bind + function float fcopyr (shortreal); // unary +

float A, B, C
assign A = B
assign D = A

, D;
+ C; //equivalent to A = faddff (B, C);
+ 1.0; //equivalent to A = faddfr(a, 1.0);

The overloading declaration links the + operator to each function prototype according to the equivalent argu-
ment types in the overloaded expression, which normally must match exactly. The exception is if the actual
argument is an integral type and there is only one prototype with a corresponding integral argument, the actual
isimplicitly cast to the type in the prototype.

Note that the function prototype does not need to match the actual function declaration exactly. If it does not,
then the normal implicit casting rules apply when calling the function. For example the fcopyi function can
be defined with an int argument:

function float fcopyi (int 1i);
float o;
o.sign = i[31];
o.exponent = 0;
o.mantissa = 0;

return o;
endfunction

Overloading the assignment operator also serves to overload implicit assignments or casting. Here these are
using the same functions as the unary +.

bind = function float fcopyi (int) ; // cast int to float
bind = function float fcopyr (real) ; // cast real to float
bind = function float fcopyr (shortreal) ; // cast shortreal to float

The operators that can be overloaded are the arithmetic operators, the relational operators and assignment.
Note that the assignment operator from a float to a float cannot be overloaded here because it is already legal.
Similarly, equality and inequality between floats cannot be overloaded.

No format can be assumed for 0 or 1, so the user cannot rely on subtraction to give equality, or on addition to
give increment. Similarly no format can be assumed for positive or negative, so comparison must be explicitly
coded.

An assignment operator such as += is automatically built from both the + and = operators successively, where
the = has its normal meaning. For example

float A, B;
bind + function float faddff (float, float);
always @(posedge clock) A += B; // equivalent to A = A + B

The scope and visibility of the overload declaration follows the same search rules as a data declaration. The
overload declaration must be defined before use in a scope which is visible. The function bound by the over-
load declaration uses the same scope search rules as a function enable from the scope where the operator is
invoked.

7.18 Streaming operators (pack / unpack)

The bit-stream casting described in Section 3.16 is most useful when the conversion operation can be easily

Copyright 2004 Accellera. All rights reserved. 73

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

expressed using only atype cast, and the specific ordering of the bit-stream is not important. Sometimes, how-
ever, a stream that matches a particular machine organization is required. The streaming operators perform
packing of bit-stream types (see Section 3.16) into a sequence of bits in a user-specified order. When used in
the left-hand-side, the streaming operators perform the reverse operation, unpack a stream of bits into one or
more variables. If the data being packed contains any 4-state types, the result of a pack operation is a 4-state
stream; otherwise, the result of a pack is a 2-state stream. Unpacking a 4-state stream into a 2-state type is done
by a cast to a 2-state variable, and vice-versa.

The syntax of the bit-stream concatenation is:

streaming_expression ::= { stream_operator [slice_size] stream_concatenation } // from Annex A.8.1
stream_operator ;= >> | <<
dlice_size ::= ps_type identifier | constant_expression
stream_concatenation ::= { stream_expression { , stream_expression} }
stream_expression ::= expression [with [array_range_expression |]
array_range_expression ::=
expression

| expression : expression

| expression +: expression

| expression -: expression
primary ::=

| streaming_expression

Syntax 7-4—streaming concatenation syntax (excerpt from Annex A)

The stream-operator determines the order in which data is streamed: >> causes data to be streamed in | eft-to-
right order, while << causes datato be streamed in right-to-left order. If adice-sizeis specified then the datato
be streamed is first broken up into slices with the specified number of bits, and then the dlices are streamed in
the specified order. If adice-sizeis not specified, the default is 1 (or bit). If, as aresult of dlicing, the last dlice
is less than the slice width then no padding is added.

For example:
int j - { A", mBM, uwgn, wpn }1'
{ >> {3}} // generates stream "A" "B" "C" D"
{ << byte {3}} // generates stream "D" "C" "B" "A" (little endian)
{ << 16 {3}} // generates stream "C" "D" "A" "B"
{ << { 8'b0o011 0101 }} // generates stream ’'b1010_1100 (bit reverse)
{ << 4 { 6’b11 0101 }} // generates stream ’'b0101 11
{ >> 4 { 6’b11 0101 }} // generates stream ‘bl1101 01 (same)
{ << 2 { { << { 4'b1l101 }} }} // generates stream 'bl1110

The streaming operators operate directly on integral types and streams. When applied to unpacked aggregate
types, such as unpacked arrays, unpacked structures, or classes, they recursively traverse the datain depth-first
order until reaching an integral type. A multi-dimensional packed array isthustreated as a single integral type,
whereas an unpacked array of packed items causes each packed item to be streamed individually. The stream-
ing operators can only process bit-stream types; any other types shall generate an error.

The result of the pack operation can be assigned directly to any bit-stream type variable. If the |eft-hand side
represents a fixed-size variable and the stream is larger than the variable, an error will be generated. If the vari-
ableislarger than the stream, the stream is | eft-justified and zero-filled on theright. If the left-hand side repre-
sents a dynamic-size variable, such as a queue or dynamic array, the variable is resized to accommodate the
entire stream. If after resizing, the variable is larger than the stream, the stream is left-justified and zero-filled
on the right. The stream is not an integral value; to participate in an expression, a cast is required.

74 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

The unpack operation accepts any bit-stream type on the right-hand side, including a stream. The right-hand
side data being unpacked is allowed to have more bits than are consumed by the unpack operation. However, if
more bits are needed than are provided by the right-hand side expression, an error is generated.

For example:
int a, b, c;

logic [10:0] up [3:0];
logic [11:1] pl, p2, p3, p4;

bit [96:1] v = {>>{ a, b, c }}; // OK: pack a, b, c

int j = {>>{ a, b, ¢ }}; // error: j is 32 bits < 96 bits

bit [99:0] d = {>>{ a, b, ¢ }}; // OK: b is padded with 4 bits

{>>{ a, b, ¢ }} = 23'b1; // error: too few bits in stream

{>>{ a, b, ¢ }} = 96'b1; // OK: unpack a = 0, b =0, ¢ =1

{>>{ a, b, ¢ }} = 100"b1; // OK: unpack as above (4 bits unread)
{ >> {pl, p2, p3, p4}} = up; // OK: unpack pl = up[3], p2 = upl2],

// p3 = upll]l, p4 = up[0]

7.18.1 Streaming dynamically-sized data

If the unpack operation includes unbounded dynamically-sized types, the process is greedy (as in a cast): the
first dynamically-sized item is resized to accept all the available data (excluding subsequent fixed-sized items)
in the stream; any remaining dynamically-sized items are |eft empty. This mechanism is sufficient to unpack a
packet-sized stream that contains only one dynamically-sized data item. However, when the stream contains
multiple variable-sized data packets, or each data packet contains more than one variable-sized data item, or
the size of the data to be unpacked is stored in the middle of the stream, this mechanism can become cumber-
some and error-prone. To overcome these problems, the unpack operation allows awith expression to explic-
itly specify the extent of a variable-sized field within the unpack operation.

The syntax of thewith expression is:

stream_expression ::= expression [with [array_range_expression |] [/l from Annex A.8.1
array_range_expression ::=
expression
| expression : expression
| expression +: expression
| expression -: expression

Syntax 7-5—with expression syntax (excerpt from Annex A)

The array range expression within the with construct must be of integral type and evaluate to values that lie
within the bounds of a fixed-size array, or to positive values for dynamic arrays or queues. The expression
before the with can be any one-dimensional unpacked array (including a queue). The expression within the
with isevaluated immediately before its corresponding array is streamed (i.e., packed or unpacked). Thus, the
expression can refer to data that is unpacked by the same operator but before the array. If the expression refers
to variables that are unpacked after the corresponding array (to the right of the array) then the expression is
evaluated using the previous values of the variables.

When used within the context of an unpack operation and the array is a variable-sized array, it shall be resized
to accommodate the range expression. If the array is afixed-sized array and the range expression evaluatesto a
range outside the extent of the array, only the range that lies within the array is unpacked and an error is gener-
ated. If the range expression evaluates to a range smaller than the extent of the array (fixed or variable sized),
only the specified items are unpacked into the designated array |ocations; the remainder of the array is unmod-
ified.

When used within the context of a pack (on the right-hand side), it behaves the same as an array dice: The
specified number of array items are packed into the stream. If the range expression evaluates to a range smaller

Copyright 2004 Accellera. All rights reserved. 75

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

than the extent of the array, only the specified array items are streamed. If the range expression evaluatesto a
range greater than the extent of the array size, the entire array is streamed and the remaining items are gener-
ated using the default value (as described in Table 5-1) for the given array.

For example, the code below uses streaming operators to model a packet transfer over a byte stream that uses
little-endian encoding:

byte stream[$]; // byte stream

class Packet
rand int header;
rand int len;
rand byte payloadl[];
int crc;

constraint G { len > 1; payload.size == len ; }

function void post randomize; crc = payload.sum; endfunction
endclass

send: begin // Create random packer and transmit
byte ql$];
Packet p = new;
void’ (p.randomize()) ;
q = {<< byte{p.header, p.len, p.payload, p.crc}}; // pack

stream = {stream, qg}; // append to stream
end
receive: begin // Receive packet, unpack, and remove

byte ql$];

Packet p = new;
{<< byte{ p.header, p.len, p.payload with [0 +: p.len], p.crc }} = stream;
stream = stream[S$bits(p) / 8 : $ 1; // remove packet
end
In the example above, the pack operation could have been written as either:
g = {<<byte{p.header, p.len, p.payload with [0 +: p.len], p.crc}};
or
g = {<<byte{p.header, p.len, p.payload with [0 : p.len-1], p.crc}};

or

q = {<<byte{p}};

Theresult in this case would be the same sincep . 1en isthe size of p.payload as specified by the constraint.

76 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

7.19 Conditional operator

conditional_expression ::= // from Annex A.8.3
cond_predicate ? { attribute instance} expression : expression

cond_predicate ::= // fromAnnex A.6.6
expression_or_cond_pattern{ & & expression_or_cond_pattern }

expression_or_cond_pattern ::=
expression | cond_pattern
cond_pattern ::= expression matches pattern

Syntax 7-6—Conditional operator syntax (excerpt from Annex A)

This section describes the traditional notation where cond_predicate is just a single expression. SystemVerilog
also allows cond_predicate to perform pattern matching, and thisis described in Section 8.4.

Asdefined in Verilog, if cond_predicate is true, the operator returns first expression, if false, it returns second
expression. If cond_predicate evaluates to an ambiguous value (x or z), then both first expression and second
expression shall be evaluated and their results shall be combined, bit by bit.

SystemVerilog extends the conditional operator to non integral types and aggregate expressions using the fol-
lowing rules:

— If both first expression and second expression are of integral type, the operation proceeds as defined.

— If first expression or second expression is an integral type and the opposing expression can be implicitly
cast to an integral type, the cast is made and proceeds as defined.

— For all other cases, the type of first expression and second expression must be equivalent.
If cond_predicate evaluates to an ambiguous value, then both first expression and second expression shall be

evaluated and their results shall be combined, element-by-element. If the elements match, the element is
returned. If they do not match, then the default-uninitialized value for that element’s type shall be returned.

7.20 Set membership

SystemVerilog supports singular value sets and set membership operators.

The syntax for the set membership operator is:

inside_expression ::= expression inside { open_range list } // from Annex A.8.3

Syntax 7-7—inside expression syntax (excerpt from Annex A)
The expression on the left-hand side of the inside operator is any singular expression.

The set-membership open_range list on the right-hand side of the inside operator is a comma-separated list of
expressions or ranges. If an expression in the list is an aggregate array, its elements are traversed by descend-
ing into the array until reaching a singular value. The members of the set are scanned until a match is found
and the operation returns 1'b1. Values can be repeated, so values and value ranges can overlap. The order of
evaluation of the expressions and ranges is non-deterministic.

int a, b, c;

if (a inside {b, c})
int array [$] = {3,4,5};
if (ex inside {1, 2, array}) ... // same as { 1, 2, 3, 4, 5}

Copyright 2004 Accellera. All rights reserved. 77

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

The inside operator uses the equality (== operator on non-integral expressions to perform the comparison.
If no match is found, the inside operator returns 1'b0. Integral expressions also use the equality operator,
except that az inside a value in the set is treated as a don’t care and that bit position shall not be considered.
Note that unlike comparisons performed by the casez statement, z values in the expression on the left-hand
side are not treated as a don't-care; the don't-care is unidirectional.

logic [2:0] wval;
while (val inside {3’'b1?1}) ... // matches 3’b101, 3’bl11l, 3’'blxl, 3’'blzl

If no match is found, but some of the comparisons result in x, the inside operator shall return 1'bx. The return
value is effectively the or reduction of all the comparisonsin the set with the expression on the left-hand side.

wire r;
assign r=3'bzll inside {3’'bl?1, 3'b01l1l}; // r = 1'bx

A range can be specified with alow and high bound enclosed by square braces [1, and separated by a colon (
:), asin [low_bound:high bound]. A bound specified by $ shall represent the lowest or highest value for
the type of the expression on the left-hand side. A match is found if the expression on the left-hand side is
inclusively within the range. When specifying a range, the expressions must be of a singular type for with the
relation operators (<=, >=) are defined. If the bound to the left of the colon is greater than the bound to the
right, the range is empty and contains no values.

For example:

bit ba = a inside { [16:23], [32:47] };
string I;
if (I inside {["a rock":"hard place"]})

// I between "a rock" and a "hard place"

78 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 8
Procedural Statements and Control Flow

8.1 Introduction (informative)

Procedural statements are introduced by the following:
initial // enablethis statement at the beginning of simulation and execute it only once
final // do this statement once at the end of simulation
always, always comb, always latch, always f£f //loop forever (see Section 9 on processes)
task // do these statements whenever the task is called

function // do these statements whenever the function is called and return avalue

SystemVerilog has the following types of control flow within a process
— Selection, loops and jumps

— Task and function calls

— Sequential and parallel blocks

— Timing control

Verilog procedural statements are in initial Or always blocks, tasks or functions. SystemVerilog adds a
final block that executes at the end of simulation.

Verilog includes most of the statement types of C, except for do...while, break, continue and goto. Ver-
ilog has the repeat statement which C does not, and the disable. The use of the Verilog disable to carry
out the functionality of break and continue requires the user to invent block names, and introduces the opportu-
nity for error.

SystemVerilog adds C-likebreak, continue and return functionality, which do not require the use of block
names.

Loops with a test at the end are sometimes useful to save duplication of the loop body. SystemVerilog adds a
C-like do...while loop for this capahility.

Verilog provides two overlapping methods for procedurally adding and removing drivers for variables: the
forcelrelease Statements and the assign/deassign Statements. The force/release Statements can also
be used to add or remove drivers for nets in addition to variables. A force statement targeting a variable that is
currently the target of an assign shall override that assign; however, once the force is released, the assign’s
effect again shall be visible.

The keyword assign is much more commonly used for the somewhat similar, yet quite different purpose of
defining permanent drivers of valuesto nets.

SystemVerilog final blocks execute in an arbitrary but deterministic sequential order. This is possible
because £inal blocks are limited to the legal set of statements allowed for functions. SystemVerilog does not

specify the ordering, but implementations should define rules that preserve the ordering between runs. This
helps keep the output log file stable since £inal blocks are mainly used for displaying statistics.

8.2 Statements

The syntax for procedural statementsis:

Copyright 2004 Accellera. All rights reserved. 79

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001
statement_or_null ::= [l from Annex A.6.4
statement

| { attribute instance} ;
statement ::= [block_identifier :] { attribute_instance} statement_item
statement_item ::=
blocking_assignment ;
| nonblocking_assignment ;
| procedural_continuous_assignment ;
| case statement
| conditional _statement
| inc_or_dec expression;
| subroutine _call_statement
| disable statement
| event_trigger
| loop_statement
| jump_statement
| par_block
| procedural_timing_control _statement
| seq_block
| wait_statement
| procedural_assertion_statement
| clocking_drive ;
| randsequence_statement
| randcase_statement
| expect_property statement

Syntax 8-1—Procedural statement syntax (excerpt from Annex A)

8.3 Blocking and nonblocking assignments

variable_Ivalue = delay_or_event_control expression
| hierarchical_dynamic_array variable identifier = dynamic_array new
| [implicit_class handle. | class_scope | package _scope] hierarchical_variable identifier
select = class_new
| operator_assignment
operator_assignment ::= variable |value assignment_operator expression
assignment_operator ::=
=|+= = =/= %= | &=||= | "= | <<= | >>= | <<<= | >>>=

nonblocking_assignment ::= variable_|value <=[delay_or_event_control] expression

blocking_assignment ::= // from Annex A.6.2

Syntax 8-2—blocking and nonblocking assignment syntax (excerpt from Annex A)
The following assignments are allowed in both Verilog-2001 and SystemVerilog:

#1 r = a;
r = #1 a;
r <= #1 a;
r <= a;

@c ¥ = a;

80 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

SystemVerilog also allows atime unit to be specified in the assignment statement, as follows:
#lns r = a;
r = #lns a;
r <= #lns a;
It shall beillegal to make nonblocking assignments to automatic variables.
The size of the left-hand side of an assignment forms the context for the right hand side expression. If the | eft-
hand side is smaller than the right hand side, information can be lost, and a warning can be given.

8.4 Selection statements

conditional_statement ::= // from Annex A.6.6
if (cond_predicate) statement_or_null [else statement_or_null]
| unique priority if statement
unique_priority if _statement ::=
[unique_priority] if (cond_predicate) statement_or_null
{ elseif (cond_predicate) statement_or_null }
[else statement_or_null]

unique_priority ::= unique| priority
cond_predicate ::=
expression_or_cond_pattern { & & expression_or_cond_pattern }
expression_or_cond_pattern ::=
expression | cond_pattern
cond_pattern ::= expression matches pattern
case _statement ::= // from Annex A.6.7
[unique priority] case_keyword (expression) case item{ case item} endcase
| [unique _priority] case_keyword (expression) matches case pattern_item { case pattern_item}
endcase
case_keyword ::= case | casez | casex
case item::=
expression{ , expression } : statement_or_null
| default [:] statement_or_null
case_pattern_item ::=
pattern [& & expression] : statement_or_null
| default [:] statement_or_null

Syntax 8-3—Selection statement syntax (excerpt from Annex A)

In Verilog, an i£ (expression) is evaluated as a boolean, so that if the result of the expression is 0 or X, the
test is considered false.

SystemVerilog adds the keywords unique and priority, which can be used before an i £. If either keyword
isused, it shall be arun-time error for no condition to match unlessthereis an explicit else. For example:

unique if ((a==0) || (a==1)) S$display("0 or 1");
else if (a == 2) S$display("2");
else if (a == 4) $display("4"); // values 3,5,6,7 cause an error

Copyright 2004 Accellera. All rights reserved. 81

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001
priority if (a[2:1]==0) $display ("0 or 1");
else if (a[2] == 0) $display("2 or 3");
else $display ("4 to 7"); //covers all other possible values, so no error

A unique if indicates that there should not be any overlap in aseries of if...else...if conditions, i.e. they
should be mutually exclusive, allowing the expressions to be evaluated in parallel. A software tool shall issue
an error if it determines that more than one condition is, or can be, true. A software tool shall also issue an
error if it determines that no condition is true, or it is possible that no condition is true, and the final i£ does
not have a corresponding else.

A priority if indicatesthat aseriesof if...else...if conditions shall be evaluated in the order listed. In
the preceding example, if the variable a had avalue of 0, it would satisfy both the first and second conditions,
reguiring priority logic. A software tool shall also issue an error if it determines that no condition is true, or it
is possible that no condition istrue, and the final i£ does not have a corresponding else.

Theunique and priority keywords apply to the entire series of if...else...if conditions. In the preceding
examples it would have been illegal to insert either keyword after any of the occurrences of else. To nest
another if statement within such a series of conditions, abegin...end block should be used.

In Verilog, there are three types of case statements, introduced by case, casez and casex. With SystemVer-
ilog, each of these can be qualified by priority Or unique. A priority case shall act on thefirst match
only. A unique case shall check for overlapping case items, allowing the case itemsto be evaluated in paral -
lel. A unique case shall issue awarning message if more than one case item matches the case expression. If
the case is qualified as priority Or unique, the simulator shall issue a warning message if no case item
matches. These warnings can be issued at either compile time or run time, as soon asit is possible to determine
theillegal condition.

Note: by specifying unique Of priority, it iSnot necessary to code adefault case to trap unexpected case
values. For example:

bit [2:0] a;

unique case(a) // values 3,5,6,7 cause a run-time warning
0,1: $display("0 or 1");
2: S$display("2");
4: Sdisplay("4");

endcase

priority casez(a) // values 4,5,6,7 cause a run-time warning
3'b00?: $display ("0 or 1");
3'b0??: $display ("2 or 3");

endcase

8.4.1 Pattern matching

Pattern matching provides a visual and succinct notation to compare a value against structures, tagged unions
and constants, and to access their members. SystemVerilog adds pattern matching capability to case and if
statements, and to conditional expressions. Before describing pattern matching in those contexts, we first
describe the general concepts.

A pattern is a nesting of tagged union and structure expressions with identifiers, constant expressions, and the

wildcard pattern“.*” at the leaves. For tagged union patterns, the identifier following the tagged keyword isa
union member name. For void members the nested member pattern is omitted.

82 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

pattern ::= I/ from Annex A.6.7.1
variable identifier
|
| . constant_expression
| tagged member_identifier [pattern |
| { pattern{ , pattern} }
| { member_identifier : pattern{ , member_identifier : pattern} }

Syntax 8-4—pattern syntax (excerpt from Annex A)

A pattern always occurs in a context of known type because it is matched against an expression of known type.
Recursively, its nested patterns also have known type. A constant expression pattern must be of integral type.
Thus a pattern can always be statically type-checked.

Each pattern introduces a new scope; the extent of this scope is described separately below for case statements,
if statements and conditional expressions. Each pattern identifier is implicitly declared as a new variable
within the pattern’s scope, with the unique type that it must have based on its position in the pattern. Pattern
identifiers must be unique in the pattern, i.e., the same identifier cannot be used in more than one positionin a
single pattern.

In pattern-matching, the value V of an expression is always matched against a pattern. Note that static type-
checking ensures that V and the pattern have the same type. The result of a pattern match is:

— A 1-bit determined value: O (false, or fail) or 1 (true, or succeed). The result cannot be x or z even if the
value and pattern contain such hits.

— If the match succeeds, the pattern identifiers are bound to the corresponding members from V, using ordi-
nary procedural assignment.
Each pattern is matched using the following simple recursive rule:

— Anidentifier pattern always succeeds (matches any value), and the identifier is bound to that value (using
ordinary procedural assignment).

— Thewildcard pattern “.*” always succeeds.
— A constant expression pattern succeedsif Visequal toitsvalue.

— A tagged union pattern succeeds if the value has the same tag and, recursively, if the nested pattern
matches the member value of the tagged union.

— A structure pattern succeeds if, recursively, each of the nested member patterns matches the corresponding
member valuesin V. In structure patterns with named members, the textual order of members does not mat-
ter, and members can be omitted. Omitted members are ignored.

Conceptually, if the value V is seen as a flattened vector of bits, the pattern specifies which bits to match, with
what values they should be matched and, if the match is successful, which bitsto extract and bind to the pattern
identifiers. Matching can be insensitive to x and z values, as described in the individua constructs bel ow.

8.4.1.1 Pattern matching in case statements

In a pattern-matching case statement, the expression in parentheses is followed by the keyword matches, and
the statement contains a series of “case_pattern_items’. The left-hand side of a case item, before the “:”, con-
sists of a pattern and, optionally, the operator & & followed by a boolean “filter” expression. The right-hand
side of a case item is a statement. Each pattern introduces a new scope, in which its pattern identifiers are
implicitly declared; this scope extends to the optional filter expression and the statement in the right-hand side
of the same case item. Thus different case items can reuse pattern identifiers.

All the patterns are completely statically type-checked. The expression being tested in the pattern-matching

Copyright 2004 Accellera. All rights reserved. 83

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

case statement must have a known type, which is the same as the type of the pattern in each caseitem.

The expression in parentheses in a pattern-matching case statement shall be eval uated exactly once. Itsvalue V
shall be matched against the left-hand sides of the case items, one at atime, in the exact order given, ignoring
the default case item if any. During this linear search, if a case item is selected, its statement is executed and
the linear search is terminated. If no caseitem is selected, and a default caseitem is given, then its statement is
executed. If no case item is selected and no default case item is given, no statement is executed.

For a case item to be selected, the value V must match the pattern (and the pattern identifiers are assigned the
corresponding member valuesin V') and then the boolean filter expression must evaluate to true (a determined

value other than 0).
Example:

typedef union tagged ({
void Invalid;
int Vvalid;

} vint;

VIint v;
case (v) matches
tagged Invalid : $display ("v is Invalid");

tagged Valid n : $display ("v is Valid with value %d", n);
endcase

In the case statement, if v currently has the 1nvalid tag, the first pattern is matched. Otherwise, it must have
the valid tag, and the second pattern is matched. Theidentifier n is bound to the value of the va1lid member,
and this value is displayed. It isimpossible to access the integer member value (n) when thetag is Invalid.

Example:
typedef union tagged ({
struct {
bit [4:0] regl, reg2, regd;
} Add;

union tagged {
bit [9:0] JmpU;
struct {
bit [1:0] cc;
bit [9:0] addr;
} JmpC;
} Jmp;
} Instr;

Instr instr;

case (instr) matches

tagged Add {rl,r2,rd} && (rd != 0): rflrd] = rflrl] + rflr2];
tagged Jmp j : case (j) matches
tagged JmpU a : pc = pc + a;
tagged JmpC {c,a}: if (rflc]) pc = a;
endcase
endcase

If instr holds an add instruction, the first pattern is matched, and the identifiers r1, r2 and rd are bound to
the three register fields in the nested structure value. The right-hand side statement executes the instruction on
the register file rf. It is impossible to access these register fields if the tag is Jmp. If instr holds a Jmp
instruction, the second pattern is matched, and the identifier 5 is bound to the nested tagged union value. The

84 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

inner case statement, in turn, matches this value against Jmpu and JmpcC patterns, and so on.

Example (same as previous example, but using wildcard and constant patternsto eliminatethe rd = o case; in
some processors, register 0 isaspecial "discard” register):
case (instr) matches

tagged Add {.*,.*, . 0} : ; // no op
tagged Add {rl,r2, rd} : rflrd]l = rflrl] + rfl[r2];
tagged Jmp j : case (j) matches
tagged JmpU a : pc = pc + a;
tagged JmpC {c,a} : if (rflcl]) pc = a;
endcase
endcase

Example (same as previous example, but note that the first inner case statement involves only structures and
constants but no tagged unions):

case (instr) matches
tagged Add s: case (s) matches

{.*,.x, . 0} : ; // no op
{r1,r2, rd} : rflrd]l = rflrl] + rflr2];
endcase
tagged Jmp j: case (j) matches
tagged JmpU a : pc = pc + a;
tagged JmpC {c,a} : if (rflcl) pc = a;
endcase

endcase
Example (same as previous example, but using nested tagged union patterns):

case (instr) matches

tagged Add {rl,r2,rd} && (rd != 0) : rflrd]l = rflrl]l + rfl[r2];

tagged Jmp (tagged JmpU a) : pc = pc + a;

tagged Jmp (tagged JmpC {c,a}) : if (rflc]) pc = a;
endcase

Example (same as previous example, with named structure components):

case (instr) matches
tagged Add {reg2:r2,regd:rd,regl:rl} && (rd != 0): rflrd] = rflrl] + rfl[r2];

tagged Jmp (tagged JmpU a) : pc = pc + aj;
tagged Jmp (tagged JmpC {addr:a,cc:c}) : if (rflcl) pc = a;
endcase

As usual, the casez and casex keywords can be used instead of case, with the same semantics. In other
words, during pattern matching, wherever two bits are compared (whether they are tag bits or members), the
casez formignores z bits, and the casex form ignores both z and x bits.

The priority and unique qualifiers play their usual role. priority implies that some case item must be
selected. unique also implies that exactly one case item will be selected, so that they can be evaluated in par-
alel.

8.4.1.2 Pattern matching in if statements

The predicate in an if statement can be a series of clauses separated with the & & operator. Each clause is
either an expression (used as a boolean filter), or has the form expression matches pattern. The clauses repre-
sent a sequential conjunction from left toright, i.e., if any clause fails the remaining clauses are not evaluated,
and all of them must succeed for the predicate to be true. Boolean expression clauses are evaluated as usual.
Each pattern introduces a new scope, in which its pattern identifiers are implicitly declared; this scope extends
to the remaining clauses in the predicate and to the corresponding “true” arm of the i £ statement.

Copyright 2004 Accellera. All rights reserved. 85

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

In each e matches p clause, e and p must have the same known statically known type. The value of e is
matched against the pattern p as described above.

Even though the pattern matching clauses always return a defined 1-bit result, the overall result can be ambig-
uous because of the boolean filter expressions in the predicate. The standard semantics of if statements hold,
i.e., thefirst statement is executed if and only if the result is a determined value other than 0.

Example:

if (e matches (tagged Jmp (tagged JmpC {cc:c,addr:a})))
. // ¢ and a can be used here
else

Example (same as previous example, illustrating a sequence of two pattern-matches with identifiers bound in
the first pattern used in the second pattern).

if (e matches (tagged Jmp j),
j matches (tagged JmpC {cc:c,addr:a}))
. // ¢ and a can be used here
else

Example (same as first example, but adding a boolean expression to the sequence of clauses). The idea
expressed is: “if eisaconditional jump instruction and the condition register is not equal to zero ...".

if (e matches (tagged Jmp (tagged JmpC {cc:c,addr:a}))
&& (rflcl != 0))
. // ¢ and a can be used here
else

Thepriority and unique qualifiers play their usual role for i£ statements even if they use pattern match-
ing.

8.4.1.3 Pattern matching in conditional expressions

A conditional expression (e1 ? e2 : e3) can aso use pattern matching, i.e., the predicate e1 can be a
sequence of expressions and “expression matches pattern” clauses separated with the & & operator, just like
the predicate of an if statement. The clauses represent a sequential conjunction from left to right, i.e., if any
clause fails the remaining clauses are not evaluated, and all of them must succeed for the predicate to be true.
Boolean expression clauses are evaluated as usual. Each pattern introduces a new scope, in which its pattern
identifiersareimplicitly declared; this scope extends to the remaining clausesin the predicate and to the conse-
guent expression e2.

As described in the previous section, e1 can evaluate to true, false or an ambiguous vaue. The semantics of

the overall conditional expression are described in Section 7.18, based on these three possible outcomes for
el.

86 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

8.5 Loop statements

loop_statement ::= // from Annex A.6.8
forever statement_or_null

| repeat (expression) statement_or_null
| while (‘expression) statement_or_null
| for (for_initialization ; expression ; for_step)
statement_or_null
| do statement_or_null while (expression) ;
| foreach (array_identifier [loop_variables]) statement
for_initialization ::=
list_of variable assignments
| data typelist_of variable assignments{ , data typelist_of variable assignments}
for_step ::=for_step assignment { , for_step_assignment }
for_step assignment ::=
operator_assignment
| inc_or_dec_expression

loop_variables::=[index_variable identifier] { , [index_variable identifier] }

Syntax 8-5—Iloop statement syntax (excerpt from Annex A)

Verilog provides for, while, repeat and forever loops. SystemVerilog enhances the Verilog for loop, and
addsado...while loop and a foreach loop.

8.5.1 The do...while loop

do statement while(condition) // as C
The condition can be any expression which can be treated as a boolean. It is evaluated after the statement.
8.5.2 Enhanced for loop

In Verilog, the variable used to control a for loop must be declared prior to the loop. If loops in two or more
parallel procedures use the same loop control variable, there is a potential of one loop modifying the variable
while other loops are till using it.

SystemVerilog adds the ability to declare the £or loop control variable within the £or loop. This creates a

local variable within the loop. Other parallel loops cannot inadvertently affect the loop control variable. For
example;

module foo;

initial begin
for (int i = 0; i <= 255; i++)

end

initial begin
loop2: for (int i = 15; i >= 0; i--)

end
endmodule

The local variable declared within a £or loop is equivaent to declaring an automatic variable in an unnamed

Copyright 2004 Accellera. All rights reserved. 87

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

block.

Verilog only permits asingleinitial statement and a single step assignment within a for loop. SystemVerilog
allowsthe initial declaration or assignment statement to be one or more comma-separated statements. The step
assignment can also be one or more comma-separated assignment statements.

for (int count = 0; count < 3; count++)
value = value +((alcount]) * (count+1l));
for (int count = 0, done = 0, int j = 0; j * count < 125; Jj++)

$display ("Value j = %d\n", j);

8.5.3 The foreach loop

The foreach construct specifies iteration over the elements of an array. Its argument is an identifier that des-
ignates any type of array (fixed-size, dynamic, or associative) followed by alist of loop variables enclosed in
square brackets. Each loop variable corresponds to one of the dimensions of the array. The foreach construct
issimilar to arepeat loop that uses the array bounds to specify the repeat count instead of an expression.

Examples:

string words [2] = { "hello", "world" };
int prod [1:8] [1:3];

foreach(words [j])
Sdisplay(j , wordsI[j]l); // print each index and value

foreach(prod[k, m])
prod(k] [m] = k * m; // initialize

The number of loop variables must match the number of dimensions of the array variable. Empty loop vari-
ables can be used to indicate no iteration over that dimension of the array, and contiguous empty loop variables
towards the end can be omitted. Loop variables are automatic, read-only, and their scope is local to the loop.
Thetype of each loop variable isimplicitly declared to be consistent with the type of array index. It shall be an
error for any loop variable to have the same identifier as the array.

The mapping of loop variables to array indexes is determined by the dimension cardinality, as described in
Section 23.7. The foreach arranges for higher cardinality indexes to change more rapidly.

// 1 2 3 3 4 1 2 -> Dimension numbers
int A [2] [3] [4]; bit [3:0][2:1] B [5:1][4];

foreach(A [i, j, k]) ...
foreach(B [gq, r, , s 1)

Thefirst foreach causesi toiteratefrom0to 1, § from 0to 2, and k from 0 to 3. The second £oreach causes
gtoiteratefrom5to 1, r from 0 to 3, and s from 2 to 1 (iteration over the 3rd index is skipped).

Multiple loop variables correspond to nested loops that iterate over the given indexes. The nesting of the loops
is determined by the dimension cardinality; outer loops correspond to lower cardinality indexes. In the first
example above, the outermost loop iterates over i and the innermost loop iterates over k.

When loop variables are used in expressions other than as indexes to the designated array, they are auto-cast
into a type consistent with the type of index. For fixed-size and dynamic arrays the auto-cast type isint. For
associative arrays indexed by a specific index type, the auto-cast type is the same as the index type. For asso-
ciative arrays indexed by a wildcard index (*), the auto-cast type iS unsigned longint. TO use different
types, an explicit cast can be used.

88 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

8.6 Jump statements

jump_statement ::= [/l from Annex A.6.5
return [expression] ;
| break ;
| continue;

Syntax 8-6—Jump statement syntax (excerpt from Annex A)

SystemVerilog adds the C jump statementSbreak, continue and return.

break // out of loop as C
continue // skip to end of loop as C
return expression // exit from a function

return // exit from a task or void function

The continue and break statements can only be used in aloop. The continue Statement jumps to the end
of the loop and executes the loop control if present. The break statement jumps out of the loop. The con-
tinue and break Statements cannot be used inside a fork...join block to control a loop outside the
fork...join block.

The return statement can only be used in atask or function. In a function returning a value, the return must
have an expression of the correct type.

Note that SystemVerilog does not include the C goto statement.

8.7 Final blocks

The final block islike an initial block, defining a procedural block of statements, except that it occurs at
the end of simulation time and executes without delays. A £inal block istypically used to display statistical
information about the simulation.

final_construct ::= final function_statement [/ from Annex A.6.2

Syntax 8-7—Final block syntax (excerpt from Annex A)

The only statements allowed inside a £inal block are those permitted inside a function declaration. This guar-
antees that they execute within asingle simulation cycle. Unlikean initial block, the £inal block does not
execute as a separate process, instead, it executesin zero time, the same as afunction call.

Final blocks execute when simulation ends due to an explicit or implicit call to $finish.
final
begin
$display ("Number of cycles executed %d", $time/period) ;

Sdisplay ("Final PC = %h",PC);
end

Execution of $finish, tf dofinish(), Of vpi_ control (vpiFinish, ...) from within a final block
shall cause the simulation to end immediately. Final blocks can only trigger once in asimulation.

Final blocks shall execute before any PLI callbacks that indicate the end of simulation.

Copyright 2004 Accellera. All rights reserved. 89

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

8.8 Named blocks and statement labels

seq_block ::= // from Annex A.6.3
begin [: block _identifier] { block item declaration} { statement_or_null }
end [: block_identifier]
par_block ::=
fork [: block_identifier] { block_item_declaration } { statement_or_null }
join_keyword [: block_identifier]
join_keyword ::=join |join_any |join_none

Syntax 8-8—Blocks and labels syntax (excerpt from Annex A)

Verilog alows a begin...end, fork...join, fork...join_ any Or fork..join nomne Statement block to be
named. A named block is used to identify the entire statement block. A named block creates a new hierarchy
scope. The block name is specified after the begin or fork keyword, preceded by a colon. For example:

begin : blockA // Verilog-2001 named block

end
SystemVerilog alows a matching block name to be specified after the block end, join, join_any or
join none keyword, preceded by a colon. This can help document which end Or join, join any Or
join_none iS associated with which begin or fork when there are nested blocks. A name at the end of the

block is not required. It shall be an error if the name at the end is different than the block name at the begin-
ning.

begin: blockB // block name after the begin or fork
end: blockB

SystemVerilog allows alabel to be specified before any statement, asin C. A statement label is used to identify
asingle statement. The label name is specified before the statement, followed by a colon.

labelA: statement

A begin...end, fork...join, fork..join any O fork..join nomne block is considered a statement, and
can have a statement label before the block.

labelB: fork // label before the begin or fork

join : labelB
It shall beillegal to have both alabel before abegin or fork and a block name after the begin or fork. A
label cannot appear before the end, join, join any OF join none, as these keywords do not form a state-

ment.

A statement with a label can be disabled using a disable statement. Disabling a statement shall have the
same behavior as disabling a named block.

See Section 9.6 for additional discussion on fork...join, fork...join any Or fork...join none.

8.9 Disable

SystemVerilog hasbreak and continue to break out of or continue the execution of loops. The Verilog-2001
disable can also be used to break out of or continue a loop, but is more awkward than using break Or con-

90 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

tinue. The disable is aso alowed to disable a named block, which does not contain the disable State-
ment. If the block is currently executing, this causes control to jump to the statement immediately after the
block. If the block isaloop body, it actslike a continue. If the block is not currently executing, thedisable
has no effect.

SystemVerilog has return from atask, but disable isalso supported. If disable isapplied to anamed task,
all current executions of the task are disabled.

module ...
always alwaysl: begin ... tl: taskl(); ... end

endmodule
always begin
disable ul.alwaysl.tl; // exit taskl, which was called from alwaysl (static)

end

8.10 Event control

delay or_event_control ::= // from Annex A.6.5
delay_control
| event_control
| repeat (expression) event_control
delay contral ::=
delay value
| # (mintypmax_expression)
event_control ::=
@ hierarchical_event_identifier
| @ (event_expression)
| @
| @(*)
| @ segquence _instance
event_expression ::=
[edge identifier] expression [iff expression]
| sequence instance[iff expression]
| event_expression or event_expression
| event_expression , event_expression

edge identifier ::= posedge | negedge [/l from Annex A.7.4

Syntax 8-9—Delay and event control syntax (excerpt from Annex A)

Any changein avariable or net can be detected using the @ event control, asin Verilog. If the expression eval-
uates to aresult of more than one bit, a change on any of the bits of the result (including an x to z change) shall
trigger the event control.

SystemVerilog adds an 1 ££ qualifier to the @ event control.

module latch (output logic [31:0] y, input [31:0] a, input enable);

always @(a iff enable == 1)
y <= a; //latch is in transparent mode
endmodule

The event expression only triggers if the expression after the 1 ££ istrue, in this case when enable isequal to

Copyright 2004 Accellera. All rights reserved. 91

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

1. Note that such an expression is evaluated when a changes, and not when enable changes. Also note that
if£f£ has precedence over or. This can be made clearer by the use of parentheses.

If avariableis not of a 4-state type, then posedge and negedge refer to transitions from 0 and to 0, respec-
tively.

If the expression denotes a clocking-block input or inout (See Section 15), the event control operator uses
the synchronous values, that is, the values sampled by the clocking event. The expression can also denote a
clocking-block name (with no edge qualifier) to be triggered by the clocking event.

A variable used with the event control can be any one of the integral data types (see Section 3.3.1) or string.
Thevariable can be either asimple variable or aref argument (variable passed by reference); it can be amem-
ber of an array, associative-array, or object (classinstance) of the aforementioned types.

Event expressions must return singular values. Aggregate types can be used in an expression provided the
expression reduces to a singular value. The object members or aggregate elements can be any type as long as
the result of the expression isasingular value.

If the event expression is areference to a ssmple object handle or chandle variable, an event is created when a
write to that variable is not equal to its previous value.

Non-virtual methods of an object and built-in methods or system functions for an aggregate type are allowed in
event control expressions as long as the type of the return value is singular and the method is defined as a func-
tion, not atask.

Changing the value of object data members, aggregate elements, or the size of adynamically sized array refer-
enced by a method or function shall cause the event expression to be re-evaluated. An implementation can
cause the event expression to be re-evaluated when changing the value or size even if the members are not ref-
erenced by the method or function.

real AORI[]; // dynamic array of reals

byte stream[$]; // queue of bytes

initial wait (AOR.size() > 0); // waits for array to be allocated
initial wait ($bits(stream) > 60)...; // waits for total number of bits

// in stream greater than 60

Packet p = new; // Packet 1
Packet g = new; // Packet 2
initial fork

@(p.status) ; // Wait for status in Packet 1 to change
@ g; // Wait for a change to handle g
10 g = p; // triggers eq.

// @(p.status) now waits for status in Packet 2 to change,
// 1f not already different from Packet 1
join

8.10.1 Sequence events

A sequence instance can be used in event expressions to control the execution of procedural statements based
on the successful match of the sequence. This allows the endpoint of a named sequence to trigger multiple
actions in other processes. Syntax 17-2 and 17-4 describe the syntax for declaring named segquences and
sequence instances. A sequence instance can be used directly in an event expression, as shown in Syntax 8-9.

When a sequence instance is specified in an event expression, the process executing the event control shall
block until the specified sequence reaches its end-point. A sequence reaches its end point whenever thereis a

match for the entire sequence. A process resumes execution following the Observe region in which the end
point is detected.

An example of using a sequence as an event control is shown below.

92 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

sequence abc;
@ (posedge clk) a ##1 b ##1 c;
endsequence

program test;
initial begin
@ abc $display("Saw a-b-c");
L1l :
end
endprogram

In the example above, when the named sequence abc reaches its end point, the initial block in the program
block test is unblocked, which then displays the string ‘ Saw a-b-c’ and continues execution with the statement
labeled 1.1. In this case, the end of the sequence acts as the trigger to unblock the event.

A sequence used in an event control is instantiated (as if by an assert property statement); the event control is
used to synchronize to the end of the sequence, regardless of its start-time. Arguments to these sequences shall
be static; automatic variables used as sequence arguments shall result in an error.

8.11 Level-sensitive sequence controls

The execution of procedural code can be delayed until a sequence termination status is true. This is accom-
plished using the level-sensitive wait statement in conjunction with the built-in method that returns the cur-
rent end status of a named sequence: triggered.

The triggered sequence method evaluates to trueif the given sequence has reached its end point at that particu-
lar point in time (in the current time-step), and false otherwise. The triggered status of a sequenceis set during
the Observe region and persists through the remainder of the time-step (i.e., until simulation time advances).

For example:
sequence abc;
@ (posedge clk) a ##1 b ##1 c;
endsequence

sequence de;
@(negedge clk) d ##[2:5] e;
endsequence

program check;
initial begin
wait (abc.triggered || de.triggered);
if (abc.triggered)
Sdisplay("abc succeeded");
if(de.triggered)
$display("de succeeded");
L2
end
endprogram

In the above example, the initial block in program check waits for the end point (success) of either
seguence abce or sequence de. When either condition evaluates to true the wait statement unblocks the pro-
cess, which displays the sequences that caused the process to unblock and then continues to execute the state-
ment labeled 1.2.

Copyright 2004 Accellera. All rights reserved. 93

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

8.12 Procedural assign and deassign removal

SystemVerilog currently supports the procedural assign and deassign Statements. However, these state-
ments might be removed from future versions of the language. See Section 26.3.

94 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 9
Processes

9.1 Introduction (informative)
Verilog-2001 has always and initial blocks which define static processes.

In an always block which is used to model combinational logic, forgetting an else leads to an unintended
latch. To avoid this mistake, SystemVerilog adds speciadized always comb and always latch blocks,
which indicate design intent to simulation, synthesis and formal verification tools. SystemVerilog also adds an
always_ f££ block to indicate sequential logic.

In systems modeling, one of the key limitations of Verilog is the inability to create processes dynamically, as
happensin an operating system. Verilog hasthe fork...join construct, but this still imposes a static limit.

SystemVerilog has both static processes, introduced by always, initial or fork, and dynamic processes,
introduced by built-in fork...join any and fork...join none.

SystemVerilog creates athread of execution for each initial or always block, for each parallel statement in
a fork...join block and for each dynamic process. Each continuous assignment can also be considered its
own thread.

SystemVerilog 3.1 adds dynamic processes by enhancing the fork...join construct in away that is more nat-
ural to Verilog users. SystemVerilog 3.1 also introduces dynamic process control constructs that can terminate
or wait for processes using their dynamic, parent-child relationship. Thesearewait fork and disable fork.

9.2 Combinational logic

SystemVerilog provides a special always comb procedure for modeling combinational logic behavior. For
example:

always comb
a=>b & c;

always comb
d <= #1lns b & c;

The always comb procedure provides functionality that is different than a normal always procedure:

— Thereisaninferred sensitivity list that includes the expressions defined in Section 9.2.1.

— The variables written on the |eft-hand side of assignments shall not be written to by any other process.

— The procedure is automatically triggered once at time zero, after all initial and always blocks have
been started, so that the outputs of the procedure are consistent with the inputs.

The SystemVerilog always comb procedure differs from the Verilog-2001 always @* in the following ways:

— always_comb automatically executes once at time zero, whereas always @* waits until a change occurs
on asignal in theinferred sensitivity list.

— always_comb iS sensitive to changes within the contents of a function, whereas always @* is only sensi-
tive to changes to the arguments of afunction.

— Variables on the left-hand side of assignments within an always comb procedure, including variables
from the contents of a called function, shall not be written to by any other processes, whereas always @*
permits multiple processes to write to the same variable.

Copyright 2004 Accellera. All rights reserved. 95

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

— Statementsin an always_comb shall not include those that block, have blocking timing or event controls,
or fork...join statements.

Software tools can perform additional checksto warn if the behavior within an always comb procedure does
not represent combinational logic, such asif latched behavior can be inferred.

9.2.1 Implicit always_comb sensitivities
The expansion of longest static prefix “P” is defined to be:
a) Pitsdfif the Pisnot amemory or indexing select or if Pisalegal word or bit select.

b) if Pisamemory or indexing select, the expansion is every possible legal memory word select with a
static prefix that matches P.

The implicit sensitivity list of an always comb includes the expansions of the longest static prefix of each
variable or select expression that is read within the block or within any function called within the block with
the following exceptions:

1) any expansion of avariable declared within the block or within any function called within the block.

2) any expression that is also written within the block or within any function called within the block.

9.3 Latched logic

SystemVerilog dso provides a special always latch procedure for modeling latched logic behavior. For
example:

always latch
if (ck) g <= d;

The always latch procedure determinesits sensitivity and executes identically to the always comb proce-
dure. Software tools can perform additional checks to warn if the behavior within an always latch proce-
dure does not represent latched logic.

9.4 Sequential logic

The SystemVerilog always ££ procedure can be used to model synthesizable sequential logic behavior. For
example:

always ff @(posedge clock iff reset == 0 or posedge reset) begin
rl <= reset ? 0 : ¥r2 + 1;

end
The always f££ block imposes the restriction that it contains one and only one event control and no blocking
timing controls. Variables on the left-hand side of assignments within an always ff procedure, including vari-
ables from the contents of a called function, shall not be written to by any other process. Software tools can
perform additional checksto warn if the behavior within an always ££ procedure does not represent sequen-
tial logic.
9.5 Continuous assignments

In Verilog, continuous assignments can only drive nets, and not variables.

SystemVerilog removes this restriction, and permits continuous assignments to drive nets any type of variable.

96 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Nets can be driven by multiple continuous assignments, or a mixture of primitives and continuous assign-
ments. Variables can only be driven by one continuous assignment or one primitive output. It shall be an error
for avariable driven by a continuous assignment or primitive output to have an initializer in the declaration or
any procedural assignment. See also Section 5.6.

9.6 fork...join

The fork...join construct enables the creation of concurrent processes from each of its parallel statements.

The syntax to declare a fork...join block is:

par_block ::= // from Annex A.6.3
fork [: block_identifier] { block item declaration } { statement_or_null }
join_keyword [: block_identifier]

join_keyword ::=join |join_any |join_none

Syntax 9-1—Fork...join block syntax (excerpt from Annex A)
One or more statements can be specified, each statement shall execute as a concurrent process.
A Verilog fork...join block always causes the process executing the fork statement to block until the termi-

nation of all forked processes. With the addition of the join any and join none keywords, SystemVerilog
provides three choices for specifying when the parent (forking) process resumes execution.

Table 9-1: fork...join control options

Option Description
join The parent process blocks until al the processes spawned by this fork complete. .
join_any The parent process blocks until any one of the processes spawned by this fork complete.

join none | The parent process continuesto execute concurrently with all the processes spawned by the
fork. The spawned processes do not start executing until the parent thread executes a blocking
statement.

When defining a fork...join block, encapsulating the entire fork within a begin...end block causes the
entire block to execute as a single process, with each statement executing sequentially.

fork
begin
statementl; // one process with 2 statements
statement2;
end
join

In the following example, two processes are forked, the first one waits for 20ns and the second waits for the
named event eventa to be triggered. Because the join keyword is specified, the parent process shall block
until the two processes complete; That is, until 20ns have elapsed and eventa has been triggered.

fork
begin
$display("First Block\n");
20ns;
end

Copyright 2004 Accellera. All rights reserved. 97

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

begin
S$display("Second Block\n");
@eventA;
end
join

A return statement within the context of a fork...join Statement isillegal and shall result in a compilation
error. For example:

task wait 20;
fork
20;
return ; // Illegal: cannot return; task lives in another process
join none
endtask

Automatic variables declared in the scope of the fork...join block shall be initialized to the initialization
value whenever execution enters their scope, and before any processes are spawned. These variables are useful
in processes spawned by looping constructs to store unique, per-iteration data. For example:

initial
for(int j = 1; j <= 3; ++3j)
fork
automatic int k = j; // local copy, k, for each value of j
#k Swrite("%0d4d", k);
begin
automatic int m = j; // the value of m is undetermined

end
join none

The example above generates the output 123.

9.7 Process execution threads

SystemVerilog creates athread of execution for:

— Each initial block

— Each always block

— Each parallel statement in @ fork...join (Or join_any Of join_none) Statement group

— Each dynamic process

Each continuous assignment can also be considered its own thread.

9.8 Process control
SystemVerilog provides constructs that allow one process to terminate or wait for the completion of other pro-

cesses. Thewait fork construct waits for the completion of processes. The disable fork construct stops
the execution of processes.

9.8.1 Wait fork

Thewait fork Statement is used to ensure that al child processes (processes created by the calling process)
have completed their execution.

98 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

The syntax for wait forkis:
wait fork ; // from Annex A.6.5
Specifying wait fork causesthe calling process to block until al its sub-processes have completed.

Verilog terminates a simulation run when there is no further activity of any kind. SystemVerilog adds the abil-
ity to automatically terminate the simulation when all its program blocks finish executing (i.e, they reach the
end of their execute block), regardless of the status of any child processes (see Section 16.6). Thewait fork
statement allows a program block to wait for the completion of all its concurrent threads before exiting.

In the following example, in the task do_test, the first two processes are spawned and the task blocks until one
of the two processes completes (either exec1, or exec2). Next, two more processes are spawned in the back-
ground. Thewait fork Statement shall ensure that the task do_test waits for all four spawned processes to
complete before returning to its caller.

task do test;
fork
execl () ;
exec2 () ;
join any
fork
exec3 () ;
exec4 () ;
join none
wait fork; // block until execl ... exec4 complete
endtask

9.8.2 Disable fork

The disable fork Statement terminates all active descendants (sub-processes) of the calling process.
The syntax for disable fork s
disable fork ; // from Annex A.6.5

The disable fork statement terminates all descendants of the calling process, as well as the descendants of
the process’ descendants, that is, if any of the child processes have descendants of their own, the disable
fork Statement shall terminate them as well.

In the example below, the task get first spawnsthree versions of atask that wait for a particular device (1,
7, or 13). Thetask wait_ device waitsfor a particular device to become ready and then returns the device's
address. When the first device becomes available, the get _first task shall resume execution and proceed to
kill the outstanding wait device processes.

task get first(output int adr);
fork
wait device(1, adr);
wait device(7, adr);
wait device(13, adr);
join any
disable fork;
endtask

Verilog supports the disable construct, which terminate a process when applied to the named block being
executed by the process. The disable fork statement differsfrom disable inthat disable fork considers
the dynamic parent-child relationship of the processes, whereas disable uses the static, syntactical informa-
tion of the disabled block. Thus, disable shall end al processes executing a particular block, whether the
processes were forked by the calling thread or not, while disable fork shall end only those processes that

Copyright 2004 Accellera. All rights reserved. 99

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

were spawned by the calling thread.

9.9 Fine-grain process control

A process is a built-in class that allows one process to access and control another process once it has started.
Users can declare variables of type process and safely pass them through tasks or incorporate them into other
objects. The prototype for the process classis:

class process;
enum state { FINISHED, RUNNING, WAITING, SUSPENDED, KILLED };

static function process self () ;
function state status|();
task kill () ;
task await () ;
task suspend() ;
task resume () ;
endclass

Objects of type process are created internally when processes are spawned. Users cannot create objects of type
process; attempts to call new shall not create a new process, and instead result in an error. The process class
cannot be extended. Attempts to extend it shall result in a compilation error. Objects of type process are
unique; they become available for reuse once the underlying process terminates and all references to the object
are discarded.

The sel£ () function returns ahandleto the current process, that is, a handle to the process making the call.

The status () function returns the process status, as defined by the state enumeration:
— FINISHED Processterminated normally.

— RUNNING Processis currently running (not in a blocking statement).

— WAITING Processiswaiting in ablocking statement.

— SUSPENDED Processis stopped awaiting a resume.

— KILLED Processwasforcibly killed (viakill or disable).

Thekill () task terminates the given process and al its sub-processes, that is, processes spawned using fork
statements by the process being killed. If the process to be terminated is not blocked waiting on some other
condition, such as an event, wait expression, or adelay then the process shall be terminated at some unspeci-
fied time in the current time step.

The await () task allows one process to wait for the completion of another process. It shall be an error to call
this task on the current process, i.e., a process cannot wait for its own completion.

The suspend () task allows a process to suspend either its own execution or that of another process. If the
process to be suspended is not blocked waiting on some other condition, such as an event, wait expression, or
a delay then the process shall be suspended at some unspecified time in the current time step. Calling this
method more than once, on the same (suspended) process, has no effect.

The resume () task restarts a previously suspended process. Calling resume on a process that was suspended
while blocked on another condition shall re-sensitize the process to the event expression, or wait for the wait
condition to become true, or for the delay to expire. If the wait condition is now true or the origina delay has
transpired, the process is scheduled onto the Active or Reactive region, so as to continue its execution in the
current time step. Calling resume on a process that suspends itself causes the process to continue to execute at
the statement following the call to suspend.

The example below starts an arbitrary number of processes, as specified by the task argument n. Next, the task

100 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

waits for the last process to start executing, and then waits for the first process to terminate. At that point the
parent process forcibly terminates all forked processes that have not completed yet.

task do n way(int N);
process job[1:N];

for (int j = 1; j <= N; Jj++)

fork
automatic int k = j;
begin job[j] = process::self(); ... ; end

join none

for(int j = 1; j <= N; J++) // wait for all processes to start
wait(job[j] != null);
job[1] .await () ; // wait for first process to finish

for (int k = 1; k <= N; k++) begin
if (job[k].status != process::FINISHED)
job[k] .kill () ;
end
endtask

Copyright 2004 Accellera. All rights reserved. 101

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Section 10
Tasks and Functions

10.1 Introduction (informative)

Verilog-2001 has static and automatic tasks and functions. Static tasks and functions share the same storage
space for al calls to the tasks or function within a module instance. Automatic tasks and function allocate
unique, stacked storage for each instance.

SystemVerilog adds the ability to declare automatic variables within static tasks and functions, and static vari-
ables within automatic tasks and functions.

SystemVerilog also adds:

— More capabilities for declaring task and function ports

— Function output and inout ports

— Void functions

— Multiple statementsin atask or function without requiring abegin...end Or fork...join block
— Returning from atask or function before reaching the end of the task or function

— Passing arguments by reference instead of by value

— Passing argument values by name instead of by position

— Default argument values

— Importing and exporting functions through the Direct Programming Interface (DPI)

102 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
10.2 Tasks
task_declaration ::= task [lifetime] task_body_declaration I/ from Annex A.2.7

task_body declaration ::=

[interface identifier . | class _scope] task_identifier ;

{ tf_item declaration }

{ statement_or_null }

endtask [: task_identifier]

| [interface identifier . | class scope] task_identifier ([tf_port list]) ;

{ block_item declaration }

{ statement_or_null }

endtask [: task_identifier]
tf_item_declaration ::=

block _item_declaration

| tf_port_declaration

tf_port_list ::=

tf_port_item{ , tf_port_item}
tf_port_item ::=

{ attribute_instance }

[tf_port_direction] data _type or_implicit
port_identifier variable_dimension [= expression]

tf_port_direction ::= port_direction | const ref
tf_port_declaration ::=

{ attribute_instance } tf_port_direction data_type or_implicit list_of_tf_variable _identifiers;

lifetime ::= static | automatic I/ from Annex A.2.1
signing ::=signed | unsigned /I fromAnnex A.2.2.1

data type or_implicit ::=
data type
| [signing] { packed_dimension}

Syntax 10-1—Task syntax (excerpt from Annex A)

A Verilog task declaration either has the formal argumentsin parentheses (like ANSI C) or in declarations and
directions.

task mytaskl (output int x, input logic vy);
endtask
task mytask2;
output x;
input vy;
int x;
logic vy;
endtask
Each forma argument has one of the following directions:
input // copy valuein at beginning
output // copy valueout at end
inout // copy in at beginning and out at end
ref /I pass reference (see Section 10.4.2)

Copyright 2004 Accellera. All rights reserved. 103

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

With SystemVerilog, there is a default direction of input if no direction has been specified. Once a direction
is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs.

task mytask3 (a, b, output logic [15:0] u, Vv);

endtask
Each formal argument also has a data type which can be explicitly declared or can inherit a default type. The
task argument default type in SystemVerilog is Llogic.

SystemVerilog allows an array to be specified as a formal argument to atask. For example:

// the resultant declaration of b is input [3:0][7:0] b[3:0]
task mytask4 (input [3:0] [7:0] a, b[3:0], output [3:0][7:0] yI[1:0]);

endééék
Verilog-2001 allows tasks to be declared as automatic, so that all formal arguments and local variables are
stored on the stack. SystemVerilog extends this capability by alowing specific formal arguments and local

variablesto be declared as automatic within astatic task, or by declaring specific formal arguments and local
variables as static within an automatic task.

With SystemVerilog, multiple statements can be written between the task declaration and endtask, which
means that the begin end can be omitted. If begin end iS omitted, statements are executed sequen-
tially, the same asiif they were enclosed in abegin end group. It shall also be legal to have no statements at
all.

In Verilog, atask exits when the endtask is reached. With SystemVerilog, the return statement can be used to
exit the task before the endtask keyword.

10.3 Functions

function_data type ::= data_type| void I/ from Annex A.2.6
function_data type or_implicit ::=
function_data type
| [signing] { packed dimension}
function_declaration ::= function [lifetime] function_body_declaration

function_body_declaration ::=
function_data type or_implicit
[interface identifier . | class_scope] function_identifier ;
{ tf_item_declaration }
{ function_statement_or_null }
endfunction [: function_identifier]
| function_data type or_implicit
[interface identifier . | class_scope] function_identifier ([tf_port list]) ;
{ block_item declaration }
{ function_statement_or_null }
endfunction [: function_identifier]

lifetime ::= static | automatic [/l from Annex A.2.1.3
signing ::=signed | unsigned // from Annex A.2.2.1

Syntax 10-2—Function syntax (excerpt from Annex A)

104 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

A Verilog function declaration either has the formal argumentsin parentheses (like ANSI C) or in declarations
and directions:

function logic [15:0] myfuncl(int x, int y);
endfunction

function logic [15:0] myfunc2;
input int x;
input int y;
endfunction
SystemVerilog extends Verilog functions to alow the same formal arguments as tasks. Function argument
directions are:
input // copy valuein at beginning
output // copy value out at end
inout // copy inat beginning and out at end
ref /1 pass reference (see Section 10.4.2)
Function declarations default to the formal direction input if no direction has been specified. Once adirection

is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs:

function logic [15:0] myfunc3 (int a, int b, output logic [15:0] u, Vv);
endfunction

Each forma argument has a data type which can be explicitly declared or can inherit a default type. The
default type in SystemVerilog is 1ogic, which is compatible with Verilog. SystemVerilog alows an array to
be specified as aformal argument to a function, for example:

function [3:0] [7:0] myfunc4 (input [3:0] [7:0] a, b[3:0]);
endfunction

It shall beillegal to call afunction with output, inout Or ref argumentsin an event expression, in an expres-
sion within a procedural continuous assignment, or in an expression that is not within a procedural statement.
However, aconst ref function argument shall be legal in this context (see section 10.4.2).

SystemVerilog alows multiple statements to be written between the function header and endfunction,
which means that the begin...end can be omitted. If the begin...end is omitted, statements are executed
sequentialy, as if they were enclosed in abegin...end group. It is also legal to have no statements at all, in
which case the function returns the current value of the implicit variable that has the same name as the func-
tion.

10.3.1 Return values and void functions

In Verilog, functions must return values. The return value is specified by assigning a value to the name of the
function.

function [15:0] myfuncl (input [7:0] x,Vy);
myfuncl = x * y - 1; //return value is assigned to function name

endfunction

SystemVerilog allows functions to be declared as type void, which do not have a return value. For non-void
functions, avalue can be returned by assigning the function nameto avalue, asin Verilog, or by using return

Copyright 2004 Accellera. All rights reserved. 105

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

with avalue. The return statement shall override any value assigned to the function name. When the return
statement is used, non-void functions must specify an expression with the return.

function [15:0] myfunc2 (input [7:0] x,Vy);

return x * y - 1; //return value is specified using return statement
endfunction

In SystemVerilog, afunction return can be a structure or union. In this case, ahierarchical name used inside the
function and beginning with the function name is interpreted as a member of the return value. If the function
name is used outside the function, the name indicates the scope of the whole function. If the function nameis
used within a hierarchical name, it also indicates the scope of the whole function.
Function calls are expressions unless of type void, which are statements:

a = b + myfuncl(c, 4d); //call myfuncl (defined above) as an expression

myprint (a); //call myprint (defined below) as a statement

function void myprint (int a);

endfunction
10.3.2 Discarding function return values
In Verilog-2001, values returned by functions must be assigned or used in an expression. Calling afunction as
if it has no return value can result in awarning message. SystemVerilog allows using the void datatypeto dis-

card a function’s return value, which is done by casting the function to the void type:

void’ (some_ function()) ;

10.4 Task and function argument passing

SystemVerilog provides two means for passing arguments to functions and tasks: by value and by reference.
Arguments can also be passed by name as well as by position. Task and function arguments can also be given
default values, allowing the call to the task or function to not pass arguments.

10.4.1 Pass by value

Pass by value is the default mechanism for passing arguments to subroutines, it is also the only one provided
by Verilog-2001. This argument passing mechanism works by copying each argument into the subroutine area.
If the subroutine is automatic, then the subroutine retains alocal copy of the argumentsiin its stack. If the argu-
ments are changed within the subroutine, the changes are not visible outside the subroutine. When the argu-
ments are large, it can be undesirable to copy the arguments. Also, programs sometimes need to share a
common piece of data that is not declared global.

For example, calling the function bellow copies 1000 bytes each time the call is made.
function int crc(byte packet [1000:1]);
for(int j= 1; j <= 1000; j++) begin
crc “= packet[j]l;

end
endfunction

10.4.2 Pass by reference

Arguments passed by reference are not copied into the subroutine area, rather, a reference to the original argu-
ment is passed to the subroutine. The subroutine can then access the argument data via the reference. Argu-

106 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

ments passed by reference must be matched with equivalent data types. See Section 5.8.1, Equivalent types.
No casting shall be permitted. To indicate argument passing by reference, the argument declaration is preceded
by the ref keyword. The general syntax is:

subroutine(ref type argument) ;
For example, the example above can be written as:

function int crc(ref byte packet [1000:1]);
for(int j= 1; j <= 1000; j++) begin
crc “= packet[j]l;
end
endfunction

Note that in the example, ho change other than addition of the ref keyword is needed. The compiler knows
that packet isnow addressed via areference, but users do not need to make these references explicit either in
the callee or at the point of the call. That is, the call to either version of the crc function remains the same:

byte packet1[1000:1];
int k = crc(packetl); // pass by value or by reference: call is the same

When the argument is passed by reference, both the caller and the subroutine share the same representation of
the argument, so any changes made to the argument either within the caller or the subroutine shall be visible to
each other. The semantics of assignments to variables passed by reference is that changes are seen outside the
subroutine immediately (before the subroutine returns). Only variables, not nets, can be passed by reference.

Arguments passed by reference must match exactly, no promotion, conversion, or auto-casting is possible
when passing arguments by reference. In particular, array arguments must match their type and all dimensions
exactly. Fixed-size arrays cannot be mixed with dynamic arrays and vice-versa.

Passing an argument by reference is a unique argument passing qualifier, different from input, output, or
inout. Combining ref£ with any other directional qualifier shall beillegal. For example, the following decla-
ration results in a compiler error:

task incr(ref input int a); // incorrect: ref cannot be qualified

A ref argument is similar to an inout argument except that an inout argument is copied twice: once from
the actual into the argument when the subroutine is called and once from the argument into the actual when the
subroutine returns. Passing object handles are no exception and have similar semantics when passed as ref or
inout arguments, thus, a ref£ of an object handle allows changes to the object handle (for example assigning
anew object) in addition to modification of the contents of the object.

To protect arguments passed by reference from being modified by a subroutine, the const qualifier can be
used together with ref to indicate that the argument, although passed by reference, is aread-only variable.

task show (const ref byte [] data);
for (int j = 0; j < data.size ; j++)
$display(datalj]); // data can be read but not written
endtask

When the formal argument is declared asa const ref, the subroutine cannot alter the variable, and an attempt
to do so shall generate a compiler error.

10.4.3 Default argument values

To handle common cases or allow for unused arguments, SystemVerilog allows a subroutine declaration to
specify adefault value for each singular argument.

The syntax to declare a default argument in a subroutine is:

Copyright 2004 Accellera. All rights reserved. 107

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

subroutine([direction] [type] argument = default value);
The optional direction can be either input, inout, Or ref (output ports can not specify defaults).

The default_valueis an expression. The expression is evaluated in the scope of the caller each time the subrou-
tine is called. The elements of the expression must be visible at the scope of subroutine and, if used, at the
scope of the cdler. If the default_value is not used, the expression is not evaluated and need not be visible at
the scope of the caller. Note that default values are only allowed with the ANSI style declaration.

When the subroutine is called, arguments with default values can be omitted from the call and the compiler
shall insert their corresponding values. Unspecified (or empty) arguments can be used as placeholders for
default arguments, allowing the use of non-consecutive default arguments. If an unspecified argument is used
for an argument that does not have a default value, a compiler error shall be issued.

task read(int j = 0, int k, int data = 1);

éﬁatask;
This example declares atask read () with two default arguments, § and data. The task can then be called
using various default arguments:

read(, 5); // is equivalent to read(0, 5, 1);
read(2, 5); // 1s equivalent to read(2, 5, 1);
read(, 5,); // is equivalent to read(0, 5, 1);
read(, 5, 7); // is equivalent to read(0, 5, 7);
read(1, 5, 2); // is equivalent to read(1, 5, 2);
read(); // error; k has no default value

10.4.4 Argument passing by name
SystemVerilog allows arguments to tasks and functions to be passed by name as well as by position. This
allows specifying non-consecutive default arguments and easily specifying the argument to be passed at the
call. For example:

function int fun(int j = 1, string s = "no");

endéﬁﬁction

The fun function can be called as follows:

fun(.j(2), .s("yes")); // fun(2, "yes");
fun(.s("yes")); // fun(1, "yes");
fun ("yes") ; // fun(1, "yes");
fun(.j(2)); // fun(2, "no");
fun(.s("yes"), .j(2)); // fun(2 , "yes");
fun(.s(), .30); // fun(1 "no") ;
fun(2); // fun(2, "no");
fun(); // fun(1, "no");

If the arguments have default values, they are treated like parameters to module instances. If the arguments do
not have a default, then they must be given or the compiler shall issue an error.

If both positional and named arguments are specified in a single subroutine call, then all the positional argu-
ments must come before the named arguments. Then, using the same example as above:

fun(.s("yes"), 2); // illegal
fun(2, .s("yes")); // OK

108 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

10.4.5 Optional argument list
When atask or function specifies no arguments, the empty parenthesis, (), following the task/function name

shall be optional. This is also true for tasks or functions that require arguments, when all arguments have
defaults specified.

10.5 Import and export functions

The syntax for the import and export of functionsis:

dpi_import_export ::= I/ from Annex A.2.6
import " DPI" [dpi_function_import_property] [¢_identifier =] dpi_function_proto ;
| import " DPI" [dpi_task_import_property] [¢_identifier =] dpi_task_proto ;
| export " DPI" [c_identifier =] function function_identifier ;
| export " DPI" [c_identifier =] task task_identifier ;
dpi_import_property ::= context | pure

dpi_function_proto®® ::= function_prototype

Syntax 10-3—Import and export syntax (excerpt from Annex A)

In both import and export, C identifier is the name of the foreign function (import/export),
function_identifier is the SystemVerilog name for the same function. If c_identifier is not explicitly given, it
shall be the same as the SystemVerilog function function_identifier. An error shall be generated if and only if
the c_identifier has characters that are not valid in a C function identifier.

Several SystemVerilog functions can be mapped to the same foreign function by supplying the same
c_identifier for several fnames. Note that all these SystemVerilog functions must have identical argument
types, as defined in the next paragraph.

For any given c_identifier, all declarations, regardless of scope, must have exactly the same function signature.
The function signature includes the return type, the number, order, direction and types of each and every argu-
ment. Each type includes dimensions and bounds of any arrays/array dimensions. For import declarations,
arguments can be open arrays. Open arrays are defined in Section 27.4.6.1. The signature also includes the
pure/context qualifiersthat can be associated with an import definition.

Only one import Or export declaration of a given function_identifier shall be permitted in any given scope.
More specifically, for an import, the import must be the sole declaration of function_identifier in the given
scope. For an export, the function must be declared in the scope where the export occurs and there must be
only one export of that function_identifier in that scope.

For exported functions, the exported function must be declared in the same scope that contains the export
»ppIn declaration. Only SystemVerilog functions can be exported (specifically, this excludes exporting a class
method)

Notethat import "DPI" functions declared thisway can be invoked by hierarchical reference the same as any
normal SystemVerilog function. Declaring a SystemVerilog function to be exported does not change the
semantics or behavior of this function from the SystemVerilog perspective (i.e. thereis no effect in SystemVer-
ilog usage other than making this exported function also accessible to C callers).

Only non-void functions with no output or inout arguments can be specified as pure. Functions specified
as pure in their corresponding SystemVerilog external declarations shall have no side effects; their results need
to depend solely on the values of their input arguments. Calls to such functions can be removed by SystemVer-
ilog compiler optimizations or replaced with the values previously computed for the same values of the input
arguments.

Specifically, apure function is assumed to not directly or indirectly (i.e., by calling other functions):

Copyright 2004 Accellera. All rights reserved. 109

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

— Perform any file operations

— Read or write anything in the broadest possible meaning, including I/O, environment variables, objects
from the operating system, or from the program or other processes, shared memory, sockets, etc.

— Access any persistent data, like global or static variables.

If a pure function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

An unqualified imported function can have side effects but cannot read or modify any SystemVerilog signals
other than those provided through its arguments. Unqualified imports shall not be permitted to invoke exported
SystemVerilog functions.

Imported functions with the context qualifier can invoke exported SystemVerilog functions, can read or
write to SystemVerilog signals other than those passed through their arguments, either through the use of other
interfaces or as a side effect of invoking exported SystemVerilog functions. Context functions shall always
implicitly be supplied a scope representing the fully qualified instance name within which the import declara-
tion was present (i.e. an import function always runs in the instance in which the import declaration occurred).
This is the same semantics as SystemVerilog functions, which also run in the scope they are defined, rather
than in the scope of the caller.

Import context functions can have side effects and can use other SystemVerilog interfaces (including but not
limited to VPI). However, note that declaring an import context function does not automatically make any
other smulator interface available. For VPI access (or any other interface access) to be possible, the appropri-
ate implementation-defined mechanism must still be used to enable these interface(s). Note also that DPI calls
do not automatically create or provide any handles or any special environment that might be needed by those
other interfaces. It shall be the user’s responsibility to create, manage or otherwise manipulate the required
handles/environment(s) needed by the other interfaces. The svGetScopeName () and related functions exist
to provide a name based linkage from DPI to other interfaces. Exported functions can only be invoked if the
current DPI context refers to an instance in which the named function is defined.

To access functions defined in any other scope the foreign code shall have to change DPI context appropri-
ately. Attempting to invoke an exported SystemVerilog function from a scope in which it is not directly visible
shall result in aruntime error. How such errors are handled shall be implementation dependent. If an imported
function needs to invoke an exported function that is not visible from the current scope, it needs to change, via
svSetScope, the current scope to a scope that does have visibility to the exported function. Thisis conceptually
equivalent to making a hierarchically qualified function call in SystemVerilog. The current SystemVerilog con-
text shall be preserved across a call to an exported function, even if current context has been modified by an
application. Note that context is not defined for non-context imports and attempting to use any functionality
depending on context from non-context imports can lead to unpredictable behavior.

110 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 11
Classes

11.1 Introduction (informative)

SystemVerilog introduces an object-oriented class data abstraction. Classes alow objects to be dynamically
created, deleted, assigned, and accessed via object handles. Object handles provide a safe pointer-like mecha-
nism to the language. Classes offer inheritance and abstract type modeling, which brings the advantages of C
function pointers with none of the type-safety problems, thus, bringing true polymorphism into Verilog.

Copyright 2004 Accellera. All rights reserved. 111

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001
11.2 Syntax
class declaration ::= // from Annex A.1.3

[virtual] class| lifetime] class _identifier [parameter_port_list]
[extendsclass type[(list_of arguments)]];
{ class item}

endclass| : class identifier]

class item::= // from Annex A.1.8
{ attribute_instance } class property
| { attribute_instance} class_method
| { attribute_instance} class_constraint
| { attribute_instance} type declaration
| { attribute_instance} class _declaration
| { attribute_instance} ti meunits_declaration'®
class property ::=
{ property_qualifier } data declaration
| const { class item qualifier } data type const_identifier [= constant_expression] ;
class method ::=
{ method_qualifier } task_declaration
| { method_qualifier } function_declaration
| extern { method_qualifier } method_prototype ;
| { method_qualifier } class constructor_declaration
| extern { method_qualifier } class_constructor_prototype

class_constructor_prototype ::=
function new ([tf_port_list]) ;

class _congtraint ::=
constraint_prototype
| constraint_declaration

clas's_item_qualifier7 =
static
| protected
| local

property_qualifier’ ::=
rand
| randc
| class item_qualifier

method_qualifier” ::=
virtual
| class _item_qualifier
method_prototype ::=
task_prototype ;
| function_prototype ;

class_constructor_declaration ::=
function [class_scope] new [([tf_port_list])];
{ block_item_declaration }
[super . new [(list_of_arguments)] ;]
{ function_statement_or_null }
endfunction [: new]

Syntax 11-1—Class syntax (excerpt from Annex A)

112 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

11.3 Overview

A class is a type that includes data and subroutines (functions and tasks) that operate on that data. A class's
data is referred to as class properties, and its subroutines are called methods, both are members of the class.
The class properties and methods, taken together, define the contents and capabilities of some kind of object.

For example, a packet might be an object. It might have a command field, an address, a sequence number, a
time stamp, and a packet payload. In addition, there are various things than can be done with a packet: initial-
ize the packet, set the command, read the packet’s status, or check the sequence number. Each Packet is differ-
ent, but as a class, packets have certain intrinsic properties that can be captured in a definition.

class Packet ;
//data or class properties
bit [3:0] command;
bit [40:0] address;
bit [4:0] master id;
integer time requested;
integer time issued;
integer status;

// initialization

function new() ;
command = IDLE;
address = 41'Db0;
master id = 5'bx;

endfunction

// methods
// public access entry points
task clean() ;
command = 0; address = 0; master id = 5’'bx;
endtask

task issue request(int delay);
// send request to bus
endtask

function integer current status();
current status = status;
endfunction
endclass

A common convention isto capitalize the first letter of the class name, so that it is easy to recognize class dec-
larations.

11.4 Objects (class instance)

A class defines a data type. An object isan instance of that class. An object is used by first declaring avariable
of that class type (that holds an object handl€) and then creating an object of that class (using the new function)
and assigning it to the variable.

Packet p; // declare a variable of class Packet
p = new; // initialize variable to a new allocated object of the class Packet

The variable p is said to hold an object handle to an object of class packet.

Uninitialized object handles are set by default to the specia value null. An uninitialized object can be
detected by comparing its handle with nu11.

Copyright 2004 Accellera. All rights reserved. 113

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001

For example: Thetask task1 below checksif the object isinitialized. If it isnot, it creates a new object viathe
new command.

class obj example;
endclass

task taskl(integer a, obj example myexample) ;
if (myexample == null) myexample = new;
endtask

Accessing non-static members (Section 11.8) or virtual methods (Section 11.19) via anull object handle is
illegal. Theresult of anillegal accessviaanull object isindeterminate, and implementations can issue an error.

SystemVerilog objects are referenced using an object handle. There are some differences between a C pointer
and a SystemVerilog object handle. C pointers give programmers alot of latitude in how a pointer can be used.
The rules governing the usage of SystemVerilog object handles are much more restrictive. A C pointer can be
incremented for example, but a SystemVerilog object handle cannot. In addition to object handles, Section 3.6
introduces the chandle datatype for use with the DPI Direct Programming Interface (see Section 27).

Table 11-1: Comparison of pointer and handle types

Operation C pointer Sxa?]t:jjle;t SV chandle
Arithmetic operations (such as incrementing) Allowed Not allowed | Not alowed
For arbitrary data types Allowed Not allowed | Not allowed
Dereference when null Error Not allowed | Not alowed
Casting Allowed Limited Not allowed
Assignment to an address of a datatype Allowed Not allowed | Not allowed
Unreferenced objects are garbage collected No Yes No
Default value Undefined null null
For classes (C++) Allowed Not allowed

11.5 Object properties

The data fields of an object can be used by qualifying class property names with an instance name. Using the

earlier example, the commands for the packet object p can be used as follows:

Packet p = new;

p.command = INIT;

p.address = S$random;

packet time = p.time requested;

Any data-type can be declared as a class property, except for net types since they are incompatible with

dynamically allocated data.

11.6 Object methods

An object’s methods can be accessed using the same syntax used to access class properties:

114 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

new;

Packet p =
= p.current status();

status
Note that the assignment to status is hot:
status = current status(p);

The focus in object-oriented programming is the object, in this case the packet, not the function call. Also,
objects are self-contained, with their own methods for manipulating their own properties. So the object doesn’t
haveto be passed asan argument to current_status (). A class properties are freely and broadly available
to the methods of the class, but each method only accesses the properties associated with its object, i.e., its
instance.

11.7 Constructors

SystemVerilog does not require the complex memory allocation and deallocation of C++. Construction of an
object is straightforward and garbage collection, asin Java, isimplicit and automatic. There can be no memory
leaks or other subtle behavior that is so often the bane of C++ programmers.

SystemVerilog provides a mechanism for initializing an instance at the time the object is created. When an
object is created, for example

Packet p = new;
The system executes the new function associated with the class:

class Packet;
integer command;

function new() ;
command = IDLE;
endfunction
endclass

Note that new is now being used in two very different contexts with very different semantics. The variable dec-
laration creates an object of class Packet. In the course of creating this instance, the new function is invoked,
in which any specialized initialization required can be done. The new function is also called the class construc-
tor.

The new operation is defined as a function with no return type, and like any other function, it must be non-
blocking. Even though new does not specify areturn type, the left-hand side of the assignment determines the
return type.

Class properties that include an initializer in their declaration are initialized before the execution of the user-
defined class constructor. Thus, initializer values can be overridden by the class constructor.

Every class has a default (built-in) new method. The default constructor first calls its parent class constructor
(super.new() as described in Section 11.14) and then proceeds to initialize each member of the current object
to its default (or uninitialized value).

It isalso possible to pass arguments to the constructor, which allows run-time customization of an object:

Packet p = new(STARTUP, $random, S$time);

where the new initialization task in packet might now look like:

function new(int cmd = IDLE, bit[12:0] adrs = 0, int cmd time);
command = cmd;
address = adrs;

Copyright 2004 Accellera. All rights reserved. 115

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

time requested = cmd_time;
endfunction

The conventions for arguments are the same as for any other procedural subroutine calls, such as the use of
default arguments.

11.8 Static class properties

The previous examples have only declared instance class properties. Each instance of the class (i.e., each
object of type Packet), hasits own copy of each of its six variables. Sometimes only one version of avariable
is required to be shared by all instances. These class properties are created using the keyword static. Thus,
for example, in acase where al instances of a class need access to acommon file descriptor:

class Packet ;
static integer fileId = S$fopen("data", "r");

Now, file1ID shall be created and initialized once. Thereafter, every Packet object can access the file descrip-
tor in the usual way:

Packet p;
c = Sfgetc(p.fileID);

Note that static class properties can be used without creating an object of that type.

11.9 Static methods

Methods can be declared as static. A static method is subject to al the class scoping and access rules, but
behaves like a regular subroutine that can be called outside the class, even with no class instantiation. A static
method has no access to non-static members (class properties or methods), but it can directly access static class
properties or call static methods of the same class. Access to non-static members or to the specia this handle
within the body of a static method isillegal and resultsin a compiler error. Static methods cannot be virtual .

class id;
static int current = 0;
static function int next id();
next id = ++current; // OK to access static class property
endfunction
endclass

A static method is different from a method with static lifetime. The former refers to the lifetime of the method
within the class, while the latter refersto the lifetime of the arguments and variables within the task.

class TwoTasks;
static task foo(); ... endtask // static class method with
// automatic variable lifetime
task static bar(); ... endtask // non-static class method with
// static variable lifetime

endclass

By default, class methods have automatic lifetime for their arguments and variables.

11.10 This

The this keyword is used to unambiguously refer to class properties or methods of the current instance. The
this keyword denotes a predefined object handle that refers to the object that was used to invoke the subrou-

116 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

tinethat this isused within. The this keyword shall only be used within non-static class methods, otherwise
an error shall beissued. For example, the following declaration is acommon way to write an initialization task:

class Demo ;
integer x;

function new (integer x)
this.x = x;
endfunction
endclass

The x isnow both a property of the class and an argument to the function new. In the function new, an unqual-
ified reference to x shall be resolved by looking at the innermost scope, in this case the subroutine argument
declaration. To access the instance class property, it is qualified with the this keyword, to refer to the current
instance.

Note that in writing methods, members can be qualified with this to refer to the current instance, but it is usu-
aly unnecessary.

11.11 Assignment, re-naming and copying
Declaring aclass variable only creates the name by which the object is known. Thus:
Packet pl;

creates avariable, p1, that can hold the handle of an object of class packet, but theinitial value of p1 iSnull.
The object does not exist, and p1 does not contain an actual handle, until an instance of type packet is cre-
ated:

Pl = new;
Thus, if another variable is declared and assigned the old handle, p1, to the new one, asin:

Packet p2;
p2 = pl;

then thereis till only one object, which can be referred to with either the name p1 or p2. Note, new was exe-
cuted only once, so only one object has been created.

If, however, the example above is re-written as shown below, a copy of p1 shall be made:

Packet pl;
Packet p2;
Pl = new;
p2 = new pl;

The last statement has new executing a second time, thus creating a new object p2, whose class properties are
copied from pl. This is known as a shallow copy. All of the variables are copied across: integers, strings,
instance handles, etc. Objects, however, are not copied, only their handles; as before, two names for the same
object have been created. Thisistrue even if the class declaration includes the instantiation operator new:

class A ;

integer j = 5;
endclass
class B ;

integer 1 = 1;

A a = new;

Copyright 2004 Accellera. All rights reserved. 117

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

endclass

function integer test;

B bl = new; // Create an object of class B

B b2 = new bl; // Create an object that is a copy of bl

b2.1 = 10; // 1 is changed in b2, but not in bl

b2.a.j = 50; // change a.j, shared by both bl and b2

test = bl.i; // test is set to 1 (bl.i has not changed)

test = bl.a.j; // test is set to 50 (a.j has changed)
endfunction

Several things are noteworthy. First, class properties and instantiated objects can be initialized directly in a
class declaration. Second, the shallow copy does not copy objects. Third, instance qualifications can be
chained as needed to reach into objects or to reach through objects:

bl.a.j // reaches into a, which is a property of bl
p.next.next.next.val // chain through a sequence of handles to get to val

To do a full (deep) copy, where everything (including nested objects) are copied, custom code is typically
needed. For example:

Packet pl = new;
Packet p2 = new;
p2.copy(pl) ;

where copy (Packet p) is a custom method written to copy the object specified as its argument into its
instance.

11.12 Inheritance and subclasses

The previous sections defined a class called pracket. This class can be extended so that the packets can be
chained together into alist. One solution would be to create anew class called LinkedPacket that contains a
variable of type Packet called packet c.

To refer to a class property of packet, the variable packet ¢ heedsto be referenced.

class LinkedPacket;
Packet packet c;
LinkedPacket next;

function LinkedPacket get next();
get _next = next;
endfunction
endclass

Since LinkedPacket iS a specidization of packet, a more elegant solution is to extend the class creating a
new subclass that inherits the members of the parent class. Thus, for example:

class LinkedPacket extends Packet;
LinkedPacket next;

function LinkedPacket get next();
get _next = next;
endfunction
endclass

Now, all of the methods and class properties of packet are part of LinkedPacket—asif they were defined in
LinkedPacket—and LinkedPacket has additional class properties and methods.

118 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

The parent’s methods can also be overridden, changing their definitions.

The mechanism provided by SystemVerilog is called Sngle-Inheritance, that is, each class is derived from a
single parent class.

11.13 Overridden members

Subclass objects are also legal representative objects of their parent classes. For example, every Linked-
Packet object isaperfectly legal packet object.

The handle of aL.inkedPacket Object can be assigned to a packet variable:

LinkedPacket 1lp = new;
Packet p = 1lp;

In this case, references to p access the methods and class properties of the packet class. So, for example, if
class properties and methods in LinkedPacket are overridden, these overridden members referred to through
p et the original membersin the packet class. From p, new and all overridden members in LinkedPacket
are now hidden.

class Packet;
integer i = 1;
function integer get () ;
get = ij;
endfunction
endclass

class LinkedPacket extends Packet;
integer i = 2;
function integer get () ;
get = -1i;
endfunction
endclass

LinkedPacket 1lp = new;

Packet p = 1p;

j =p.i; // 3 1, not 2

j = p.get(); // 3 =1, not -1 or -2

To call the overridden method via a parent class object (p in the example), the method needs to be declared
virtual (See Section 11.19).

11.14 Super

The super keyword is used from within aderived class to refer to members of the parent class. It is necessary
to use super to access members of a parent class when those members are overridden by the derived class.

class Packet; //parent class
integer value;
function integer delay () ;
delay = value * value;
endfunction
endclass

class LinkedPacket extends Packet; //derived class
integer value;

Copyright 2004 Accellera. All rights reserved. 119

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

function integer delay () ;
delay = super.delay()+ value * super.value;
endfunction
endclass

The member can be a member declared alevel up or be inherited by the class one level up. Thereis no way to
reach higher (for example, super . super. count isnot alowed).

Subclasses (or derived classes) are classes that are extensions of the current class. Whereas superclasses (par-
ent classes or base classes) are classes that the current class is extended from, beginning with the original base
class.
When using the super within new, super.new shall bethefirst statement executed in the constructor. Thisis
because the superclass must be initialized before the current class and if the user code doesn’t provide an ini-
tialization, the compiler shall insert acall to super . new automatically.
11.15 Casting
It is always legal to assign a subclass variable to a variable of aclass higher in the inheritance tree. It is never
legal to directly assign a superclass variable to avariable of one of its subclasses. However, it islegal to assign
asuperclass handle to a subclass variable if the superclass handle refers to an object of the given subclass.
To check if the assignment is legal, the dynamic cast function $cast () isused (see Section 3.15).
The syntax for $cast () is

task Scast(singular dest handle, singular source handle) ;
or

function int S$Scast(singular dest handle, singular source handle);
When used with object handles, $cast () checks the hierarchy tree (super and subclasses) of the
source_expr to seeif it contains the class of dest_handle. If it does, scast () does the assignment. Other-
wise the error handling is as described in Section 3.15.
11.16 Chaining constructors
When a subclass is instantiated, the class method new () isinvoked. The first action new () takes, before any
code defined in the function is evaluated, is to invoke the new () method of its superclass, and so on up the
inheritance hierarchy. Thus, all the constructors are called, in the proper order, beginning with the root base
class and ending with the current class.
If the initialization method of the superclass requires arguments, there are two choices. To aways supply the
same arguments, or to use the super keyword. If the arguments are always the same, then they can be speci-
fied at the time the classis extended:

class EtherPacket extends Packet (5) ;
This passes 5 to the new routine associated with pPacket.
A more general approach isto use the super keyword, to call the superclass constructor:

function new() ;

super .new (5) ;

endfunction

To use this approach, super .new (...) must be the first executable statement in the function new.

120 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

11.17 Data hiding and encapsulation

So far, al class properties and methods have been made available to the outside world without restriction.
Often, it is desirable to restrict access to class properties and methods from outside the class by hiding their
names. This keeps other programmers from relying on a specific implementation, and it also protects against
accidental modifications to class properties that are internal to the class. When al data becomes hidden—being
accessed only by public methods—testing and maintenance of the code becomes much easier.

In SystemVerilog, unqualified class properties and methods are public, available to anyone who has access to
the object’s name.

A member identified as 1ocal is available only to methods inside the class. Further, these local members are
not visible within subclasses. Of course, non-local methods that access local class properties or methods can be
inherited, and work properly as methods of the subclass.

A protected class property or method has all of the characteristics of a 1o0cal member, except that it can be
inherited; it isvisible to subclasses.

Note that within the class, alocal method or class property of the class can be referenced, even if it isin a dif-
ferent instance. For example:

class Packet;
local integer i;
function integer compare (Packet other) ;
compare = (this.i == other.i);
endfunction
endclass

A strict interpretation of encapsulation might say that other.i should not be visible inside of this packet,
sinceit isaloca class property being referenced from outside its instance. Within the same class, however,
these references are allowed. In this case, this. i shall be compared to other. i and the result of the logical
comparison returned.

Class members can be identified as either 1ocal or protected; class properties can be further defined as
const, and methods can be defined as virtual. Thereis no predefined ordering for specifying these modifi-
ers; however, they can only appear once per member. It shall be an error to define members to be both 10ca1
and protected, or to duplicate any of the other modifiers.

11.18 Constant class properties

Class properties can be made read-only by a const declaration like any other SystemVerilog variable. How-
ever, because class objects are dynamic objects, class properties allow two forms of read-only variables: global
constants and instance constants.

Glaobal constant class properties are those that include an initial value as part of their declaration. They are sim-
ilar to other const variablesin that they cannot be assigned a value anywhere other than in the declaration.

class Jumbo_ Packet;
const int max_size = 9 * 1024; // global constant
byte payload [];
function new(int size);
payload = new[size > max size ? max size : size];
endfunction
endclass

Instance constants do not include an initial value in their declaration, only the const qualifier. Thistype of con-

stant can be assigned a value at run-time, but the assignment can only be done once in the corresponding class
constructor.

Copyright 2004 Accellera. All rights reserved. 121

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

class Big Packet;
const int size; // instance constant
byte payload [];
function new() ;

size = S$random % 4096; //one assignment in new -> ok
payload = new|[size];
endfunction
endclass

Typically, global constants are also declared static since they are the same for al instances of the class.
However, an instance constant cannot be declared static, since that would disallow all assignments in the
constructor.

11.19 Abstract classes and virtual methods

A set of classes can be created that can be viewed as all being derived from a common base class. For example,
acommon base class of type BasePacket that sets out the structure of packets but isincomplete would never
be instantiated. From this base class, though, a number of useful subclasses could be derived, such as Ethernet
packets, token ring packets, GPSS packets, satellite packets. Each of these packets might look very similar, all
needing the same set of methods, but they could vary significantly in terms of their internal details.

A base class sets out the prototype for the subclasses. Since the base class is not intended to be instantiated, it
can be made abstract by specifying the classto be virtual:

virtual class BasePacket;

Abstract classes can also have virtual methods. Virtual methods are a basic polymorphic construct. A virtual
method overrides a method in all the base classes, whereas a normal method only overrides a method in that
class and its descendants. One way to view thisisthat thereis only one implementation of avirtual method per
class hierarchy, and it is aways the onein the latest derived class. Virtual methods provide prototypes for sub-
routines, al of the information generally found on the first line of a method declaration: the encapsulation cri-
teria, the type and number of arguments, and the return type if it is needed. Later, when subclasses override
virtual methods, they must follow the prototype exactly. Thus, all versions of the virtual method look identical
in al subclasses:

virtual class BasePacket;
virtual function integer send(bit[31:0] data);
endfunction

endclass

class EtherPacket extends BasePacket;
function integer send(bit([31:0] data);
// body of the function

endfunction
endclass

EtherPacket is now a class that can be instantiated. In general, if an abstract class has any virtual methods, all
of the methods must be overridden (and provided with a method body) for the subclass to be instantiated. If
any virtual methods have no implementation, the subclass needs to be abstract.

An abstract class can contain methods for which there is only a prototype and no implementation (i.e., an
incomplete class). An abstract class cannot be instantiated, it can only be derived. Methods of normal classes
can also be declared virtual. In this case, the method must have a body. If the method does have a body, then
the class can be instantiated, as can its subclasses.

122 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

11.20 Polymorphism: dynamic method lookup

Polymorphism allows the use of a variable in the superclass to hold subclass objects, and to reference the
methods of those subclasses directly from the superclass variable. As an example, assume the base class for the
Packet Objects, BasePacket defines, as virtual functions, al of the public methods that are to be generally
used by its subclasses, methods such as send, receive, print, etc. Even though BasePacket is abstract, it can
still be used to declare avariable:

BasePacket packets[100];

Now, instances of various packet objects can be created, and put into the array:

EtherPacket ep = new; // extends BasePacket
TokenPacket tp = new; // extends BasePacket
GPSSPacket gp = new; // extends EtherPacket
packets [0] = ep;
packets[1l] = tp;
packets([2] = gp;

If the datatypes were, for example, integers, bits and strings, all of these types could not be stored into asingle
array, but with polymorphism, it can be done. In this example, since the methods were declared as virtual,
the appropriate subclass methods can be accessed from the superclass variable, even though the compiler
didn’t know—at compile time—what was going to be loaded into it.

For example, packets [1]:
packets[1] .send() ;

shall invoke the send method associated with the TokenpPacket class. At run-time, the system correctly binds
the method from the appropriate class.

Thisisatypica example of polymorphism at work, providing capabilitiesthat are far more powerful than what
is found in a non-aobject-oriented framework.

11.21 Class scope resolution operator ::

The class scope operator : : is used to specify an identifier defined within the scope of a class. It has the fol-
lowing form:

class_identifier :: { class_identifier :: } identifier

Identifiers on the left side of the scope-resolution operator (: :) can be class names or package names (see
Section 18.2).

Because classes and other scopes can have the same identifiers, the scope resolution operator uniquely identi-
fies amember of a particular class. In addition, to disambiguating class scope identifiers, the : : operator also
allows access to static members (class properties and methods) from outside the class, aswell as access to pub-
lic or protected elements of a superclasses from within the derived classes.

class Base;

typedef enum {bin,oct,dec,hex} radix;

static task print(radix r, integer n); ... endtask
endclass

Base b = new;

int bin = 123;

b.print (Base::bin, bin); // Base::bin and bin are different
Base: :print (Base::hex, 66);

Copyright 2004 Accellera. All rights reserved. 123

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

In SystemVerilog, the class scope operator appliesto all static elements of a class: static class properties, static
methods, typedefs, enumerations, structures, unions, and nested class declarations. Class-scope resolved
expressions can be read (in expressions), written (in assignments or subroutines calls) or triggered off (in event
expressions). They can also be used as the name of atype or a method call.

Like modules, classes are scopes and can nest. Nesting allows hiding of local names and local allocation of
resources. Thisis often desirable when anew type is needed as part of the implementation of aclass. Declaring
types within a class helps prevent name collisions, and cluttering the outer scope with symbols that are used
only by that class. Type declarations nested inside a class scope are public and can be accessed outside the
class.

class StringlList;
class Node; // Nested class for a node in a linked list.
string name;
Node 1link;
endclass
endclass

class StringTree;
class Node; // Nested class for a node in a binary tree.
string name;
Node left, right;
endclass
endclass
// StringList::Node is different from StringTree: :Node

The scope resol ution operator enables:
— Access to static public members (methods and class properties) from outside the class hierarchy.
— Accessto public or protected class members of a superclass from within the derived classes.

— Access to type declarations and enumeration named constants declared inside the class from outside the
class hierarchy or from within derived classes.

11.22 Out of block declarations

It is convenient to be able to move method definitions out of the body of the class declaration. Thisisdonein
two steps. Declare, within the class body, the method prototypes—whether it is afunction or task, any qualifi-
ers (local, protected Of virtual), and the full argument specification plus the extern qualifier. The
extern qualifier indicates that the body of the method (its implementation) is to be found outside the declara-
tion. Then, outside the class declaration, declare the full method—Ilike the prototype but without the qualifi-
ers—and, to tie the method back to its class, qualify the method name with the class name and a pair of colons:

class Packet;
Packet next;

function Packet get next();// single line
get _next = next;
endfunction

// out-of-body (extern) declaration
extern protected virtual function int send (int value) ;
endclass

function int Packet::send(int wvalue) ;
// dropped protected virtual, added Packet::
// body of method

endfunction

124 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

The out of block method declaration must match the prototype declaration exactly; the only syntactical differ-
ence is that the method name is preceded by the class name and scope operator (: :).

Out of block declarations must be declared in the same scope as the class declaration.

11.23 Parameterized classes

It is often useful to define a generic class whose objects can be instantiated to have different array sizes or data
types. This avoids writing similar code for each size or type, and allows a single specification to be used for
objects that are fundamentally different, and (like atemplated classin C++) not interchangeable.

The normal Verilog parameter mechanism is used to parameterize a class:
class vector #(int size = 1);
bit [size-1:0] a;
endclass

Instances of this class can then be instantiated like modules or interfaces:

vector #(10) vten; // object with vector of size 10
vector #(.size(2)) vtwo; // object with vector of size 2
typedef vector#(4) Vfour; // Class with vector of size 4

Thisfeature is particularly useful when using types as parameters:

class stack #(type T = int);
local T items][];

task push(T a); ... endtask
task pop(ref T a); ... endtask
endclass

The above class defines a generic stack class that can be instantiated with any arbitrary type:

stack is; // default: a stack of int’s
stack# (bit[1:10]) bs; // a stack of 10-bit wvector
stack# (real) rs; // a stack of real numbers

Any type can be supplied as a parameter, including a user-defined type such asaclass Or struct.

The combination of a generic class and the actual parameter valuesis called a specialization (or variant). Each
specialization of a class has a separate set of static member variables (thisis consistent with C++ templated
classes). To share static member variables among severa class specializations, they must be placed in a non-
parameterized base class.

class vector #(int size = 1);
bit [size-1:0] a;
static int count = 0;

function void disp count () ;
Sdisplay("count: %d of size %d", count, size);
endfunction
endclass

The variable count in the example above can only be accessed by the corresponding disp count method.
Each specialization of the class vector hasits own unique copy of count.

To avoid having to repeat the specialization either in the declaration or to create parameters of that type, a
typedef should be used:

typedef vector# (4) Vfour;

Copyright 2004 Accellera. All rights reserved. 125

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

typedef stack# (Vfour) Stack4;
Stack4 sl, s2; // declare objects of type Stack4

A parameterized class can extend another parameterized class. For example:

class C #(type T = bit); ... endclass // base class

class D1 #(type P = real) extends C; // T is bit (the default)
class D2 #(type P = real) extends C #(integer) ; // T is integer
class D3 #(type P = real) extends C #(P); // T is P

Class D1 extendsthe base class ¢ using the base class's default type (bit) parameter. Class D2 extends the base
class c using an integer parameter. Class D3 extends the base class ¢ using the parameterized type (P) with
which the extended class is parameterized.

11.24 Typedef class

Sometimes a class variable needs to be declared before the class itself has been declared. For example, if two
classes each need a handle to the other. When, in the course of processing the declaration for the first class, the
compiler encounters the reference to the second class, that reference is undefined and the compiler flags it as
an error.

Thisisresolved using typedef to provide aforward declaration for the second class:

typedef class C2; // C2 is declared to be of type class
class C1;
C2 ¢c;
endclass
class C2;
Cl c;
endclass

In thisexample, c2 isdeclared to be of type c1ass, afact that is re-enforced later in the source code. Note that
the class construct always creates a type, and does not require a typede£ declaration for that purpose (asin
typedef class ...). Thisisconsistent with common C++ use.

Note that the c1ass keyword in the statement typedef class C2; iShot necessary, and is used only for
documentation purposes. The statement typedef c2; isequivalent and shall work the same way.

11.25 Classes and structures

SystemVerilog adds the object-oriented class construct. On the surface, it might appear that class and
struct provide equivalent functionality, and only one of them is needed. However, that is not true; class dif-
fersfrom struct in four fundamental ways:

1) SystemVerilog struct are strictly static objects; they are created either in a static memory location
(global or module scope) or on the stack of an automatic task. Conversely, SystemVerilog objects (i.e.,
classinstances) are exclusively dynamic, their declaration doesn't create the object; that is done by calling
new.

2) SystemVerilog structs are type compatible so long as their bit sizes are the same, thus copying structs of
different composition but equal sizes is allowed. In contrast, SystemVerilog objects are strictly strongly-
typed. Copying an object of one type onto an object of another is not allowed.

3) SystemVerilog objects are implemented using handles, thereby providing C-like pointer functionality. But,
SystemVerilog disallows casting handles onto other data types, thus, unlike C, SystemVerilog handles are
guaranteed to be safe.

126 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

4) SystemVerilog objects form the basis of an Object-Oriented data abstraction that provides true
polymorphism. Class inheritance, abstract classes, and dynamic casting are powerful mechanisms that go
way beyond the mere encapsul ation mechanism provided by structs.

11.26 Memory management

Memory for objects, strings, and dynamic and associative arrays is alocated dynamically. When objects are
created, SystemVerilog allocates more memory. When an object is no longer needed, SystemVerilog automati-
cally reclaims the memory, making it available for re-use. The automatic memory management system is an
integral part of SystemVerilog. Without automatic memory management, SystemVerilog's multi-threaded, re-
entrant environment creates many opportunities for users to run into problems. A manual memory manage-
ment system, such as the one provided by C'smalloc and free, would not be sufficient.

For example, consider the following example:

myClass obj = new;
fork
taskl(obj);
task2 (obj);

join none

In this example, the main process (the one that forks off the two tasks) does not know when the two processes
might be done using the object ob7. Similarly, neither task1 nor task2 knowswhen any of the other two pro-
cesses will no longer be using the object ob7. It is evident from this simple example that no single process has
enough information to determine when it is safe to free the object. The only two options available to the user
are (1) play it safe and never reclaim the object, or (2) add some form of reference count that can be used to
determine when it might be safe to reclaim the object. Adopting the first option can cause the system to
quickly run out of memory. The second option places a large burden on users, who, in addition to managing
their testbench, must also manage the memory using less than ideal schemes. To avoid these shortcomings,
SystemVerilog manages all dynamic memory automatically. Users do not need to worry about dangling refer-
ences, premature deallocation, or memory leaks. The system shall automatically reclaim any object that is no
longer being used. In the example above, al that users do is assign null to the handle obj when they no
longer need it. Similarly, when an object goes out of scope the system implicitly assignsnu11 to the object.

Copyright 2004 Accellera. All rights reserved. 127

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Section 12
Random Constraints

12.1 Introduction (informative)

Constraint-driven test generation allows users to automatically generate tests for functional verification. Ran-
dom testing can be more effective than a traditional, directed testing approach. By specifying constraints, one
can eadlly create tests that can find hard-to-reach corner cases. SystemVerilog allows users to specify con-
straints in a compact, declarative way. The constraints are then processed by a solver that generates random
values that meet the constraints.

The random constraints are typically specified on top of an object oriented data abstraction.that models the
data to be randomized as objects that contain random variables and user-defined constraints. The constraints
determine the legal values that can be assigned to the random variables. Objects areideal for representing com-
plex aggregate data types and protocols such as Ethernet packets.

Section 12.2 provides an overview of object-based randomization and constraint programming. The rest of this
section provides detailed information on random variables, constraint blocks, and the mechanisms used to
manipul ate them.

12.2 Overview

This section introduces the basic concepts and uses for generating random stimulus within objects. SystemVer-
ilog uses an object-oriented method for assigning random values to the member variables of an object, subject
to user-defined constraints. For example:

class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;

constraint word align {addr[1:0] == 2'b0;}
endclass

The Bus class models a simplified bus with two random variables: addr and data, representing the address
and data values on abus. The word_align constraint declares that the random values for addr must be such
that addr isword-aligned (the low-order 2 bits are 0).

The randomize () method iscalled to generate new random values for a bus object:
Bus bus = new;

repeat (50) begin
if (bus.randomize() == 1)
$display ("addr = %16h data = %h\n", bus.addr, bus.data);
else
$display ("Randomization failed.\n");
end

Calling randomize () causes new values to be selected for all of the random variables in an object such that
all of the constraints are true (satisfied). In the program test above, abus object is created and then randomized
50 times. The result of each randomization is checked for success. If the randomization succeeds, the new ran-
dom values for addr and data are printed; if the randomization fails, an error message is printed. In this
example, only the addr value is constrained, while the data value is unconstrained. Unconstrained variables
are assigned any value in their declared range.

Constraint programming is a powerful method that lets users build generic, reusable objects that can later be

128 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

extended or constrained to perform specific functions. The approach differs from both traditional procedural
and object-oriented programming, as illustrated in this example that extends the Bus class:

typedef enum {low, mid, high} AddrType;

class MyBus extends Bus;
rand AddrType atype;
constraint addr range

{

(atype == low) -> addr inside { [0 : 15] };
(atype == mid) -> addr inside { [16 : 1271};
(atype == high) -> addr inside {[128 : 255]};
}
endclass

The MmyBus class inherits all of the random variables and constraints of the Bus class, and adds a random vari-
able called atype that is used to control the address range using another constraint. The addr range con-
straint uses implication to select one of three range constraints depending on the random value of atype.
When amyBus object israndomized, valuesfor addr, data, and atype are computed such that all of the con-
straints are satisfied. Using inheritance to build layered constraint systems enables the development of general-
purpose models that can be constrained to perform application-specific functions.

Objects can be further constrained using the randomize () with construct, which declares additional con-
straints in-line with the call to randomize ():

task exercise bus (MyBus bus) ;
int res;

// EXAMPLE 1: restrict to low addresses
res = bus.randomize() with {atype == low;};

// EXAMPLE 2: restrict to address between 10 and 20
res = bus.randomize() with {10 <= addr && addr <= 20;};

// EXAMPLE 3: restrict data values to powers-of-two
res = bus.randomize() with {data & (data - 1) == 0;};
endtask

This exampleillustrates several important properties of constraints:

— Constraints can be any SystemVerilog expression with variables and constants of integral type (bit, reg,
logic, integer, enum, packed struct,dc)

— The constraint solver must be able to handle a wide spectrum of equations, such as algebraic factoring,
complex boolean expressions, and mixed integer and bit expressions. In the example above, the power-of-
two constraint was expressed arithmetically. It could have also been defined with expressions using a shift
operator. For example, 1 << n, wheren isa5-bit random variable.

— If asolution exists, the constraint solver must find it. The solver can fail only when the problem is over-
constrained and there is no combination of random values that satisfy the constraints.

— Constraintsinteract bidirectionally. In this example, the value chosen for addr depends on atype and how
it is constrained, and the value chosen for atype depends on addr and how it is constrained. All expres-
sion operators are treated bidirectionally, including the implication operator (-).

— Constraints support only 2-state values. 4-state values (X or Z) or 4-state operators (e.g., ===, |==) are
illegal and shall result in an error.

Sometimes it is desirable to disable constraints on random variables. For example, to deliberately generate an
illegal address (non-word aligned):

Copyright 2004 Accellera. All rights reserved. 129

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

task exercise illegal (MyBus bus, int cycles);
int res;

// Disable word alignment constraint.
bus.word align.constraint mode (0) ;

repeat (cycles) begin

// CASE 1: restrict to small addresses.
res = bus.randomize () with {addr([0] || addr[1];};

end

// Re-enable word alignment constraint
bus.word align.constraint mode (1) ;
endtask

The constraint mode () method can be used to enable or disable any named constraint block in an object.
In this example, the word-alignment constraint is disabled, and the object is then randomized with additional
constraints forcing the low-order address bits to be non-zero (and thus unaligned).

The ability to enable or disable constraints allows users to design constraint hierarchies. In these hierarchies,
the lowest level constraints can represent physical limits grouped by common properties into named constraint
blocks, which can be independently enabled or disabled.

Similarly, the rand_mode () method can be used to enable or disable any random variable. When a random
variableis disabled, it behavesin exactly the same way as other nonrandom variables.

Occasiondlly, it is desirable to perform operations immediately before or after randomization. That is accom-
plished via two built-in methods, pre randomize () and post randomize (), which are automatically
called before and after randomization. These methods can be overridden with the desired functionality:

class XYPair;
rand integer x, y;
endclass

class MyXYPair extends XYPair
function void pre randomize () ;
super.pre randomize() ;
Sdisplay ("Before randomize x=%0d4d, y=%04", x, Vy);
endfunction

function void post randomize();
super .post randomize () ;
Sdisplay ("After randomize x=%0d, y=%0d4", x, V);
endfunction
endclass

By default, pre randomize () and post randomize () call their overridden parent class methods. When
pre randomize() OF post_randomize () are overridden, care must be taken to invoke the parent class
methods, unless the class is a base class (has no parent class), otherwise the base class methods shall not be
called.

The random stimulus generation capabilities and the object-oriented constraint-based verification methodol-
ogy enable usersto quickly develop teststhat cover complex functionality and better assure design correctness.

130 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

12.3 Random variables

Class variables can be declared random using the rand and randc type-modifier keywords.

The syntax to declare arandom variable in aclassis:

class property ::= // from Annex A.1.8
{ property_qualifier } data declaration

property_qualifi e’ =
rand
| randc

Syntax 12-1—Random variable declaration syntax (excerpt from Annex A)
— The solver can randomize singular variables of any integral type.

— Arrays can be declared rand or randc, in which case al of their member elements are treated as rand or
randc.

— Dynamic and associative arrays can be declared rand or randec. All of the elements in the array are ran-
domized, overwriting any previous data. If the array elements are object handles, all of the array elements
must be non-null. Individual array elements can be constrained, in which case the index expression must be
aliteral constant.

— Thesize of adynamic array declared as rand or rande can also be constrained. In that case, the array shall
be resized according to the size constraint, and then al the array elements shall be randomized. The array
size constraint is declared using the size method. For example,

rand bit [7:0] 1len;
rand integer datal];
constraint db { data.size == len; }

Thevariable 1en is declared to be 8 bits wide. The randomizer computes arandom value for the 1en vari-
ablein the 8-bit range of 0 to 255, and then randomizes the first 1en elements of the data array.

If adynamic array’s sizeis not constrained then randomize () randomizes all the elementsin the array.

— An object handle can be declared rand in which case all of that object’s variables and constraints are
solved concurrently with the variables and constraints of the object that contains the handle. Objects cannot
be declared randec.

12.3.1 rand modifier

Variables declared with the rand keyword are standard random variables. Their values are uniformly distrib-
uted over their range. For example:

rand bit [7:0] y;
Thisis an 8-bit unsigned integer with arange of 0 to 255. If unconstrained, this variable shall be assigned any

value in the range 0 to 255 with equal probability. In this example, the probability of the same value repeating
on successive callsto randomize is 1/256.

12.3.2 randc modifier

Variables declared with the randc keyword are random-cyclic variables that cycle through all the valuesin a
random permutation of their declared range. Random-cyclic variables can only be of type bit or enumerated
types, and can be limited to a maximum size.

Copyright 2004 Accellera. All rights reserved. 131

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

To understand rande, consider a 2-bit random variable y:

randc bit [1:0] y;
The variable y can take on the values 0, 1, 2, and 3 (range 0 to 3). Randomize computes an initial random per-
mutation of the range values of y, and then returns those values in order on successive calls. After it returnsthe
last element of a permutation, it repeats the process by computing a new random permutation.

The basic idea is that rande randomly iterates over all the values in the range and that no value is repeated
within an iteration. When the iteration finishes, a new iteration automatically starts.

initial permutation: 0 53 =52 =1 —]
next permutation: — 2 > 1 = 3 = 0
next permutation: > 2 >0 =1 — 3

The permutation segquence for any given randc variable is recomputed whenever the constraints change on
that variable, or when none of the remaining values in the permutation can satisfy the constraints.

To reduce memory requirements, implementations can impose a limit on the maximum size of a randc vari-
able, but it should be no less than 8 hits.

The semantics of random-cyclical variables require that they be solved before other random variables. A set of
constraints that includes both rand and randc variables shall be solved such that the randc variables are
solved first, and this can sometimes cause randomize () to fail.

12.4 Constraint blocks

The values of random variables are determined using constraint expressions that are declared using constraint
blocks. Constraint blocks are class members, like tasks, functions, and variables. Constraint block names must
be unique within a class.

The syntax to declare a constraint block is:

132 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

constraint_declaration ::= [/l from Annex A.1.9
[static] constraint constraint_identifier constraint_block
constraint_block ::={ { constraint_block_item} }
constraint_block _item ::=
solve identifier_list beforeidentifier_list ;
| constraint_expression
constraint_expression ::=
expression_or_dist ;
| expression —> constraint_set
| if (expression) constraint_set [€lse constraint_set]
| foreach (array_identifier [loop_variables]) constraint_set
constraint_set ::=
constraint_expression
| { { constraint_expression} }
dist_list ::=dist_item{ , dist_item}
dist_item ::= value range[dist_weight]
dist_weight ::=
= expression
| :/ expression
constraint_prototype ::=[static] constraint constraint_identifier ;
extern_constraint_declaration ::=
[static] constraint class_scope constraint_identifier constraint_block

identifier_list ;= identifier { , identifier }

expression_or_dist ::= expression [dist { dist_list}] // from Annex A.2.10
loop variables::=[index_variable identifier] { , [index_variable identifier] } // from Annex A.6.8

Syntax 12-2—Constraint syntax (excerpt from Annex A)

constraint_identifier is the name of the constraint block. This name can be used to enable or disable a con-
straint using the constraint mode () method (see Section 12.8).

congtraint_block is a list of expression statements that restrict the range of a variable or define relations
between variables. A constraint_expression is any SystemVerilog expression, or one of the constraint-specific
operators. -> and dist (see Sections 12.4.4 and 12.4.5).

The declarative nature of constraints imposes the following restrictions on constraint expressions:

— Functions are alowed with certain limitations (see Section 12.4.11).

— Operators with side effects, such as ++ and - - are not allowed.

— randc variables cannot be specified in ordering constraints (see solve...before in Section 12.4.9).

— dist expressions cannot appear in other expressions.

12.4.1 External constraint blocks

Constraint block bodies can be declared outside a class declaration, just like external task and function bodies:
// class declaration

class XYPair;
rand integer x, y;

Copyright 2004 Accellera. All rights reserved. 133

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

constraint c;
endclass

// external constraint body declaration
constraint XYPair::c { x < y; }

12.4.2 Inheritance

Constraints follow the same general rules for inheritance as class variables, tasks, and functions:
— A constraint in a derived class that uses the same name as a constraint in its parent classes overrides the
base class constraints. For example:

class A;
rand integer Xx;
constraint ¢ { x < 0; }
endclass

class B extends A;
constraint ¢ { x > 0; }
endclass

An instance of class A constrains x to be less than zero whereas an instance of class B constrains x to be
greater than zero. The extended class B overrides the definition of constraint c. In this sense, constraints
are treated the same as virtual functions, so casting an instance of B to an A does not change the constraint
Set.

— The randomize () task isvirtua. Accordingly, it treats the class constraints in a virtual manner. When a
named constraint is redefined in an extended class, the previous definition is overridden.

12.4.3 Set membership
Constraints support integer value sets and the set membership operator (as defined in Section 7.20).

Absent any other constraints, all values (either single values or value ranges), have an equal probability of
being chosen by the inside operator.

The negated form of the inside operator denotes that expression lies outside the set: ! (expression
ingside { set }).

For example:

rand integer x, vy, z;
constraint cl {x inside {3, 5, [9:15], [24:32], [y:2*yl, z};}

rand integer a, b, c;
constraint c2 {a inside {b, c};}

integer fives[0:3] = { 5, 10, 15, 20 };
rand integer v;

constraint c3 { v inside fives; }

It isimportant to note that the inside operator is bidirectional, thus, the second example above is equiva ent
toa == b || a == c.

12.4.4 Distribution

In addition to set membership, constraints support sets of weighted values called distributions. Distributions

134 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

have two properties. they are a relational test for set membership, and they specify a statistical distribution
function for the results.

The syntax to define a distribution expression is:

constraint_block ::= // from Annex A.1.9

| expression dist { dist_list};
dist_list ::=dist_item{ , dist_item}
dist_item ::= value range[dist_ weight]
dist_weight ::=
= expression
| :/ expression
dist_item::=
value range := expression
| value range :/ expression

expression_or_dist ::= expression [dist { dist_list}] I from Annex A.2.10

Syntax 12-3—Constraint distribution syntax (excerpt from Annex A)
expression can be any integral SystemVerilog expression.

The distribution operator dist evaluatesto true if the value of the expression is contained in the set; otherwise
it evaluatesto false.

Absent any other constraints, the probability that the expression matches any valuein thelist is proportional to
its specified weight.

The distribution set is a comma-separated list of integral expressions and ranges. Optionally, each term in the
list can have aweight, which is specified using the : = or : / operators. If no weight is specified for an item, the
default weight is:= 1. The weight can be any integral SystemVerilog expression.

The : = operator assigns the specified weight to the item, or if the item is arange, to every value in the range.

The :/ operator assigns the specified weight to the item, or if the item is arange, to the range as a whole. If
there are n values in the range, the weight of each valueis range weight / n.

For example:
x dist {100 := 1, 200 := 2, 300 := 5}

means x is equal to 100, 200, or 300 with weighted ratio of 1-2-5. If an additional constraint isadded that spec-
ifies that x cannot be 200:

x = 200;
x dist {100 := 1, 200 := 2, 300 := 5}

then x is equal to 100 or 300 with weighted ratio of 1-5.

It is easier to think about mixing ratios, such as 1-2-5, than the actual probabilities because mixing ratios do
not have to be normalized to 100%. Converting probabilities to mixing ratiosis straightforward.

When weights are applied to ranges, they can be applied to each value in the range, or they can be applied to
the range as awhole. For example,

x dist { [100:102] := 1, 200 := 2, 300 := 5}

Copyright 2004 Accellera. All rights reserved. 135

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

means x is equal to 100, 101, 102, 200, or 300 with aweighted ratio of 1-1-1-2-5.
x dist { [100:102] :/ 1, 200 := 2, 300 := 5}
means x is equal to one of 100, 101, 102, 200, or 300 with aweighted ratio of 1/3-1/3-1/3-2-5.

In general, distributions guarantee two properties: set membership and monotonic weighting, which means
that increasing a weight increases the likelihood of choosing those values.

Limitations:

— A dist operation shall not be applied to randc variables.

— A dist expression requires that expression contain at |east one rand variable.

12.4.5 Implication

Constraints provide two constructs for declaring conditional (predicated) relations: implication and if...else.
The implication operator (->) can be used to declare an expression that implies a constraint.

The syntax to define an implication constraint is:

constraint_expression ::= [/ from Annex A.1.9

| expression —> constraint_set

Syntax 12-4—Constraint implication syntax (excerpt from Annex A)
The expression can be any integral SystemVerilog expression.
The boolean equivalent of the implication operator a -> bis (1a || b). Thisstatesthat if the expressionis
true, then random numbers generated are constrained by the constraint (or constraint set). Otherwise the ran-
dom numbers generated are unconstrained.

The constraint_set represents any valid constraint or an unnamed constraint set. If the expression istrue, all of
the constraints in the constraint set must also be satisfied.

For example:
mode == small -> len < 10;
mode == large -> len > 100;

In this example, the value of mode implies that the value of 1en shall be constrained to less than 10 (mode ==
small), greater than 100 (mode == large), or unconstrained (mode != small andmode != large).

In the following example:

bit [3:0] a, b;
constraint ¢ { (a == 0) -> (b == 1); }

Both a and b are 4 bits, so there are 256 combinations of a and b. Constraint ¢ saysthat a == o impliesthat

b == 1, thereby eliminating 15 combinations: { 0,0}, {0,2}, ... {0,15}. Therefore, the probability that a == o
isthus 1/(256-15) or 1/241.

12.4.6 if...else constraints

if...else Style constraints are also supported.

136 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

The syntax to define an if...else constraint is:

constraint_expression ::= [/ from Annex A.1.9

| if (expression) constraint_set [€lse constraint_set]

Syntax 12-5—if...else constraint syntax (excerpt from Annex A)
expression can be any integral SystemVerilog expression.

constraint_set represents any valid constraint or an unnamed constraint block. If the expression is true, al of
the constraints in the first constraint or constraint set must be satisfied, otherwise al of the constraints in the
optional else constraint or constraint-block must be satisfied. Constraint sets can be used to group multiple
constraints.

If...else style constraint declarations are equivalent to implications:

if (mode == small)
len < 10;

else if (mode == large)
len > 100;

isequivalent to

mode == small -> len < 10 ;
mode == large -> len > 100 ;

In this example, the value of mode implies that the value of 1en is less than 10, greater than 100, or uncon-
strained.

Just like implication, if...else style constraints are bidirectional. In the declaration above, the value of mode
congtrains the value of 1en, and the value of 1en constrains the value of mode.

Because the else part of an if...else Style constraint declaration is optional, there can be confusion when an
else isomitted from a nested i £ sequence. Thisis resolved by always associating the else with the closest
previous if that lacks an else. In the example below, the else goes with the inner i £, as shown by indenta-
tion:

if (mode != large)
if (mode == small)
len < 10;
else // the else applies to preceding if
len > 100;

12.4.7 lterative Constraints

Iterative constraints allow arrayed variables to be constrained in a parameterized manner using loop variables
and indexing expressions.

The syntax to define an iterative constraint is:

constraint_expression ::= // from Annex A.1.9

| foreach (‘array_identifier [loop_variables]) constraint_set
loop_variables::=[index_variable identifier] { , [index_variable identifier] } // from Annex A.6.8

Syntax 12-6—foreach iterative constraint syntax (excerpt from Annex A)

Copyright 2004 Accellera. All rights reserved. 137

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

The foreach construct specifies iteration over the elements of an array. Its argument is an identifier that des-
ignates any type of array (fixed-size, dynamic, associative, or queue) followed by a list of loop variables
enclosed in square brackets. Each loop variable corresponds to one of the dimensions of the array.

For example:

class C;
rand byte A[] ;

constraint Cl { foreach (
constraint C2 { foreach (
endclass

) A[i] inside {2,4,8,16}; }

Al i
AL51) Al >2*3; }

]
]

C1 congtrains each element of the array A to bein the set [2,4,8,16]. C2 constrains each element of the array A
to be greater than twice itsindex.

The number of loop variables must not exceed the number of dimensions of the array variable. The scope of
each loop variable isthe foreach constraint construct, including its constraint_set. The type of each loop vari-
able isimplicitly declared to be consistent with the type of array index. An empty loop variable indicates no
iteration over that dimension of the array. As with default arguments, alist of commas at the end can be omit-
ted, thus, foreach(arr [j]) isashorthand for foreach(arr [j, , , , 1).ltshall beanerror
for any loop variable to have the same identifier as the array.

The mapping of loop variables to array indexes is determined by the dimension cardinality, as described in
Section 23.7.

// 1 2 3 3 4 1 2 -> Dimension numbers
int A [2] [3] [4]; bit [3:0][2:1] B [5:1][4];

foreach(A2 [i, j, k1) ...
foreach(B [g, r, , s 1)
The first foreach causes i to iterate from 0 to 1, § from O to 2, and k from 0 to 3. The second foreach

causes g to iteratefrom5to 1, r from0to 3, and s from 2 to 1.
Iterative constraints can include predicates. For example:

class C;
rand int A[] ;

constraint cl { arr.size inside {[1:101}; }
constraint c2 { foreach (A[k]) (k < A.size - 1) -> Alk + 1] > A[k]; }
endclass

The first congtraint, c1, constrains the size of the array a to be between 1 and 10. The second constraint, c2,
constrains each array value to be greater than the preceding one, i.e., an array sorted in ascending order.

Within a foreach, predicate expressionsinvolving only constants, state variables, object handle comparisons,
loop variables, or the size of the array being iterated behave as guards against the creation of constraints, and
not as logical relations. For example, the implication in constraint c2 above involves only aloop variable and
the size of the array being iterated, thus, it allows the creation of aconstraint only whenk < A.size() - 1,
which in this case prevents an out-of-bounds access in the constraint. Guards are described in more detail in
Section 12.4.12.

Index expressions can include loop variables, constants, and state variables. Invalid or out or bound array
indexes are not automatically eliminated; users must explicitly exclude these indexes using predicates.

The size method of a dynamic or associative array can be used to constrain the size of the array (see constraint
c1 above). If an array is constrained by both size constraints and iterative constraints, the size constraints are

138 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

solved first, and the iterative constraints next. Asaresult of thisimplicit ordering between size constraints and
iterative constraints, the size method shall be treated as a state variable within the foreach block of the corre-
sponding array. For example, the expression 2. size istreated as arandom variable in constraint c1, and as a
state variable in constraint c2. Thisimplicit ordering can cause the solver to fail in some situations.

12.4.8 Global constraints

When an object member of aclassisdeclared rand, al of its constraints and random variables are randomized
simultaneously along with the other class variables and constraints. Constraint expressions involving random
variables from other objects are called global constraints.

class A; // leaf node
rand bit [7:0] v; e v
endclass
class B extends A; // heap node Jeﬂ//// \\\<H0ht
rand A left;
rand A right; @ AY @ AY)

constraint heapcond {left.v <= v; right.v <= v;}
endclass

This example uses global constraints to define the legal values of an ordered binary tree. Class A represents a
leaf node with an 8-bit value v. Class B extends class A and represents a heap-node with value v, aleft subtree,
and aright subtree. Both subtrees are declared as rand in order to randomize them at the same time as other
class variables. The constraint block named heapcond has two global constraints relating the left and right
subtree values to the heap-node value. When an instance of class B is randomized, the solver simultaneously
solvesfor B and its |eft and right children, which in turn can be leaf nodes or more heap-nodes.

The following rules determine which objects, variables, and constraints are to be randomized:

1) First, determine the set of objects that are to be randomized as a whole. Starting with the object that
invoked the randomize () method, add all objects that are contained within it, are declared rand, and are
active (see rand_mode in Section 12.7). The definition is recursive and includes all of the active random
objects that can be reached from the starting object. The objects selected in this step are referred to as the
active random objects.

2) Next, select al of the active constraints from the set of active random objects. These are the constraints
that are applied to the problem.

3) Finaly, select all of the active random variables from the set of active random objects. These are the
variables that are to be randomized. All other variable references are treated as state variables, whose
current value is used as a constant.

12.4.9 Variable ordering

The solver must assure that the random values are selected to give a uniform value distribution over legal value
combinations (that is, all combinations of legal values have the same probability of being the solution). This
important property guaranteesthat al legal value combinations are equally probable, which allows randomiza-
tion to better explore the whole design space.

Sometimes, however, it is desirable to force certain combinations to occur more frequently. Consider the case
where a 1-bit control variable s constrains a 32-bit data value d:

class B;

rand bit s;
rand bit [31:0] d;

Copyright 2004 Accellera. All rights reserved. 139

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

constraint ¢ { s -> d == 0; }
endclass

The constraint ¢ says “s implies d equals zero”. Although this reads as if s determines 4, in fact s and d are
determined together. There are 233 possible combinations of {s,d}, but s isonly true for {1, 0}. Thus, the
probability that s istrueis 1/23%, which is practically zero.

The constraints provide a mechanism for ordering variables so that s can be chosen independently of 4. This
mechanism defines a partial ordering on the evaluation of variables, and is specified using the solve keyword.

class B;
rand bit s;
rand bit [31:0] d;

constraint ¢ { s -> d == 0; }
constraint order { solve s before d; }
endclass

In this case, the order constraint instructs the solver to solve for s before solving for d. The effect isthat s is
now chosen true with 50% probability, and then d is chosen subject to the value of s. Accordingly, d == o
shall occur 50% of thetime, andd '= o shall occur for the other 50%.

Variable ordering can be used to force selected corner cases to occur more frequently than they would other-
wise. However, a“solve...before ...” constraint does not change the solution space, and so cannot cause the
solver to fail.

The syntax to define variable order in a constraint block is:

constraint_block _item ::= /l from Annex A.1.9
solveidentifier_list beforeidentifier_list ;
| constraint_expression

Syntax 12-7—Solve...before constraint ordering syntax (excerpt from Annex A)
solve and before each take a comma-separated list of integral variables or array elements.

The following restrictions apply to variable ordering:

— Only random variables are allowed, that is, they must be rand.

— randc variables are not allowed. randc variables are always solved before any other.
— The variables must be integral values.

— A congtraint block can contain both regular value constraints and ordering constraints.

— There must be no circular dependencies in the ordering, such as “solve a before b” combined with “solve b
beforea’.

— Variables that are not explicitly ordered shall be solved with the last set of ordered variables. These values
are deferred until as late as possible to assure a good distribution of values.

— Variables can be solved in an order that is not consistent with the ordering constraints, provided that the
outcome is the same. An example situation where this might occur is:

X == H
X < y;
solve y before x;

In this case, since x has only one possible assignment (0), x can be solved for before y. The constraint
solver can use this flexibility to speed up the solving process.

140 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

12.4.10 Static constraint blocks
A constraint block can be defined as static by including the static keyword inits definition.

The syntax to declare a static constraint block is:

constraint_declaration ::= // from Annex A.1.9
[static] constraint constraint_identifier constraint_block

Syntax 12-8—Static constraint syntax (excerpt from Annex A)
If aconstraint block isdeclared as static, then callsto constraint_mode () shall affect all instances of the

specified constraint in all objects. Thus, if astatic constraint is set to OFF, it is off for all instances of that par-
ticular class.

12.4.11 Functions in Constraints

Some properties are unwieldy or impossible to express in a single expression. For example, the natural way to
compute the number of 1'sin a packed array uses aloop:

function int count ones (bit [9:0] w);

for(count ones = 0; w != 0; w=w >> 1)
count _ones += w & 1'bl;
endfunction

Such a function could be used to constrain other random variables to the number of 1 bits:
constraint C1 { length == count ones(v) ; }

Without the ability to call afunction, this constraint requires the loop to be unrolled and expressed as a sum of
theindividual bits:

constraint C2

{

((v>>7)&1) + ((v>>6)&1) + ((v>>5)&l) +
((v>>2)&1) + ((v>>1)&1l) + ((v>>0)&l);

length == ((v>>9)&l) + ((v>>8)&l) +
((v>>4)&l) + ((v>>3)&l) +

}

Unlike the count_ones function, more complex properties, which require temporary state or unbounded loops,
may be impossible to convert into a single expression. The ability to call functions, thus, enhances the expres-
sive power of the constraint language and reduces the likelihood of errors. Note that the two constraints above
are not completely equivalent; c2 isbidirectional (1ength can constrain v and vice-versa), whereas 1 is not.

To handle these common cases, SystemVerilog allows constraint expressions to include function calls, but it
imposes certain semantic restrictions.

— Functions that appear in constraint expressions cannot contain output or ref arguments (const ref are
allowed).

— Functions that appear in constraint expressions should be automatic (or preserve no state information) and
have no side effects.

— Functions that appear in constraints cannot modify the constraints, for example, calling rand mode or
constraint mode methods.

— Functions shall be called before constraints are solved, and their return values shall be treated as state vari-
ables.

Copyright 2004 Accellera. All rights reserved. 141

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

— Random variables used as function arguments shall establish an implicit variable ordering or priority. Con-
straints that include only variables with higher priority are solved before other, lower priority, constraints.
Random variables solved as part of ahigher priority set of constraints become state variablesto the remain-
ing set of constraints. For example:

class B;
rand int x, y;
constraint C { x <= F(y); }
constraint D { y inside { 2
endclass

, 4,81} 5}

Forcesy to be solved before x. Thus, constraint D is solved separately before constraint ¢, which uses the
valuesof y and F (y) as state variables. Note that the behavior for variable ordering implied by function
arguments differs from the behavior for ordering specified using the “solve...before...” constraint;
function argument variable ordering subdivides the solution space thereby changing it. Since constraints
on higher-priority variables are solved without considering lower-priority constraints at all this subdivi-
sion can cause the overall constraints to fail. Within each prioritized set of constraints, cyclical (randc)
variables are solved first.

— Circular dependencies created by the implicit variable ordering shall result in an error.

— Function calls in active constraints are executed an unspecified number of times (at least once), in an
unspecified order.

12.4.12 Constraint guards

Constraint guards are predicate expressions that function as guards against the creation of constraints, and not
as logica relations to be satisfied by the solver. These predicate expressions are evaluated before the con-
straints are solved, and are characterized by involving only the following items:

— constants
— state variables
— object handle comparisons (comparisons between two handles or a handle and the constant nul1)

In addition to the above, iterative constraints (see Section 12.4.7) also consider loop variables and the size of
the array being iterated as state variables.

Treating these predicate expressions as constraint guards prevents the solver from generating evaluation errors,
thereby failing on some seemingly correct constraints. This enables users to write constraints that avoid errors
due to nonexistent object handles or array indices out of bounds. For example, the sort constraint of the singly-
linked list, snist, shown below is intended to assign a random sequence of numbers that is sorted in ascend-
ing order. However, the constraint expression will fail on the last element when next .n resultsin an evalua-
tion error due to a non-existent handle.

class SList;
rand int n;

rand Slist next;

constraint sort { n < next.n; }
endclass

The error condition above can be avoided by writing a predicate expression to guard against that condition:
constraint sort { if(next != null) n < next.n; }

In the sort constraint above, the i £ prevents the creation of a constraint when next == null, which in this
case avoids accessing a hon-existent object. Both implication (—>) and i £...else can be used as guards.

142 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Guard expressions can themselves include subexpressions that result in evaluation errors (e.g., null refer-
ences), and they are also guarded from generating errors. This logical sifting is accomplished by evaluating
predicate subexpressions using the following 4-state representation:

— 0 FALSE Subexpression evaluates to FALSE
— 1 TRUE Subexpression evaluatesto TRUE
— E ERROR Subexpression causes an eval uation error

— R RaANDOM Expression includes random variables and cannot be evaluated

Every subexpression within a predicate expression is evaluated to yield one of the above four values. The sub-
expressions are evaluated in an arbitrary order, and the result of that evaluation plus the logical operation
define the outcome in the aternate 4-state representation. A conjunction (&&), disunction (| |), or negation
(1) of subexpressions can include some (perhaps all) guard subexpressions. The following rules specify the
resulting value for the guard:

— Conjunction (&&): If any one of the subexpressions evaluates to FALSE, then the guard evaluates to
FALSE. Otherwise, if any one subexpression evaluates to ERROR, then the guard evaluates to ERROR,
else the guard evaluates to TRUE.

— If the guard evaluates to FAL SE then the constraint is eliminated.
— If the guard evaluates to TRUE then a (possibly conditional) constraint is generated.
— If the guard evaluates to ERROR then an error is generated and randomize fails.

— Digunction (| |): If any one of the subexpressions evaluatesto TRUE, then the guard evaluatesto TRUE.
Otherwise, if any one subexpression evaluates to ERROR, then the guard evaluates to ERROR, else the
guard evaluates to FALSE.

— If the guard evaluates to FAL SE then a (possibly conditional) constraint is generated.
— If the guard evaluates to TRUE then an unconditional constraint is generated.
— If the guard evaluates to ERROR then an error is generated and randomizefails.

— Negation (!): If the subexpression evaluates to ERROR, then the guard evaluates to ERROR. Otherwise,
if the subexpression evaluates to TRUE or FALSE then the guard evaluates to FALSE or TRUE, respec-
tively.

These rules are codified by the following truth tables:

&& 0 1 E R [0 1 E R !
0 0O 0O 0 o©O 0 0 1 E R 0 T
1 0 1 E R 1 1 1 1 1 1 0
E 0 E E E E E 1 E E E E
R 0 R E R R R 1 E R R R
Conjunction Digjunction Negati on_

These above rules are applied recursively until all subexpressions are evaluated. The final value of the evalu-
ated predicate expression determines the outcome as follows:

— If theresult is TRUE then an unconditional constraint is generated.
— If theresult is FAL SE then the constraint is eliminated, and can generate no error.

— If theresult is ERROR then an unconditional error is generated and the constraint fails.

Copyright 2004 Accellera. All rights reserved. 143

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

— If thefinal result of the evaluationis RANDOM then a conditional constraint is generated.

When final value is RANDOM atraversal of the predicate expression tree is needed to collect all conditional
guards that evaluate to RANDOM. When the final value is ERROR, a subsequent traversal of the expression
tree is not required, allowing implementations to issue only one error.

Example 1:

class D;
int x;
endclass

class C;

rand int x, y;

D a, b;

constraint cl1 { (x <y || a.x > b.x || a.x == 5) -> x+y == 10; }
endclass

In the example above, the predicate subexpressionsare (x < y), (a.x > b.x),and (a.x == 5),whichare
all connected by disunction. Some possible cases are:

— Case 1: aisnon-null, b iSnull, a.x iS5.
Since (a.x==5) istrue, thefact that b.x generates an error does not result in an error.
The unconditional constraint (x+y == 10) iSgenerated.
— Case2: aisnull
Thisaways resultsin error, irrespective of the other conditions.
— Case 3: aisnon-null, b isnon-null, a.x i$10, b.x is 20.
All the guard subexpressions evaluate to FAL SE.
The conditiona constraint (x<y) -> (x+y == 10) isgenerated.

Example 2:

class D;
int x;
endclass

class C;

rand int x, vy;

D a, b;

constraint cl { (X <y & a.Xx > b.x & a.x == 5) -> x+y == 10; }
endclass

In the example above, the predicate subexpressions are (x <Y), (ax > b.x), and (a.x == 5), which are all con-
nected by conjunction. Some possible cases are:

— Casel: aisnon-null, b iSnull, a.xiS6.
Since (a.x==5) isfase, thefact that b.x generates an error does not result in an error.

The constraint is eliminated.

— Case 2 aiSnull
Thisaways resultsin error, irrespective of the other conditions.

— Case 3: 2 isnon-null, b isnon-null, a.x iS5 b.xis2.
All the guard subexpressions evaluate to TRUE, producing constraint (x<y) -> (x+y == 10).

144 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Example 3:

class D;
int x;
endclass

class C;

rand int x, vy;

D a, b;

constraint cl { (x <y & (a.x > b.x || a.x ==5)) -> x+y == 10; }
endclass

In the example above, the predicate subexpressionsare (x < y) and (a.x > b.x || a.x == 5),whichis
connected by disunction. Some possible cases are:

— Case l: aisnon-null, b iSnull, a.x iS5.
The guard expression evaluatesto (ERROR || a.x==5), which evaluatesto (ERROR || TRUE).
The guard subexpression evaluates to TRUE.
The conditional constraint (x<y) -> (x+y == 10) iSgenerated.
— Case2: aisnon-null, b iSnull, a.xiS8.
The guard expression evaluatesto (ERROR || FALSE), and generates an error.
— Case3: aisnull
Thisaways resultsin error, irrespective of the other conditions.
— Case4: aisnon-null, b isnon-null, a.x iS5 b.xis2.
All the guard subexpressions evaluate to TRUE.

The conditional constraint (x<y) -> (x+y == 10) iSgenerated.

12.5 Randomization methods

12.5.1 randomize()

Variables in an object are randomized using the randomize () class method. Every class has a built-in ran-
domize () virtual method, declared as:

virtual function int randomize () ;

The randomize () method is avirtual function that generates random values for al the active random vari-
ablesin the object, subject to the active constraints.

The randomize () method returns 1 if it successfully sets all the random variables and objects to valid values,
otherwise it returns 0.

Example:
class SimpleSum;
rand bit [7:0] x, vy, z;
constraint c {z == x + y;}

endclass

This class definition declares three random variables, %, v, and z. Calling the randomi ze () method shall ran-
domize an instance of class simpleSum:

Copyright 2004 Accellera. All rights reserved. 145

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

SimpleSum p = new;
int success = p.randomize() ;
if (success == 1)

Checking the return status can be necessary because the actual value of state variables or addition of con-
straintsin derived classes can render seemingly simple constraints unsatisfiable.

12.5.2 pre_randomize() and post_randomize()

Every class contains built-in pre_randomize () and post_randomize () functions, that are automatically
caled by randomize () before and after computing new random values.

The built-in definition for pre_randomize () is:

function void pre randomize;
if (super) super.pre randomize() ; // test super to see if the
// object handle exists
// Optional programming before randomization goes here
endfunction

The built-in definition for post _randomize () is:

function void post randomize;
if (super) super.post randomize(); // test super to see if the
// object handle exists
// Optional programming after randomization goes here
endfunction

When obj . randomize () isinvoked, it first invokes pre randomize () 0n obj and aso al of its random
object members that are enabled. pre randomize () then calls super.pre randomize (). After the new
random values are computed and assigned, randomize () invokeSpost randomize () on obj and aso all
of its random object members that are enabled. post randomize () then calls super.post_randomize ().

Users can override the pre_randomize () in any classto perform initialization and set pre-conditions before
the object is randomized.

Users can override the post_randomize () in any class to perform cleanup, print diagnostics, and check
post-conditions after the object is randomized.

If these methods are overridden, they must call their associated parent class methods, otherwise their pre- and
post-randomization processing steps shall be skipped.

The pre_randomize () and post randomize () methods are not virtual. However, because they are auto-
matically called by the randomize () method, which isvirtual, they appear to behave as virtual methods.
12.5.3 Randomization methods notes

— Random variables declared as static are shared by all instances of the class in which they are declared.
Each time the randomize () method is called, the variable is changed in every class instance.

— If randomize () fails, the constraints are infeasible and the random variables retain their previous values.
— If randomize () fals, post _randomize () isnot called.
— The randomize () method is built-in and cannot be overridden.

— The randomize () method implements object random stability. An object can be seeded by calling its
srandom () method (see Section 12.12.3).

— The built-in methods pre_randomize () and post_randomize () are functionsand cannot block.

146 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

12.6 In-line constraints — randomize() with

By using the randomize () ..with construct, users can declare in-line constraints at the point where the ran-
domize () methodis caled. These additional constraints are applied along with the object constraints.

The syntax for randomize () ...with iS:

inline_constraint _declaration ::= /I not in Annex A
class variable identifier . randomize[([variable_identifier_list |null])]
with constraint_block

Syntax 12-9—In-line constraint syntax (not in Annex A)
class variable identifier isthe name of an instantiated object.

The unnamed constraint_block contains additional in-line constraints to be applied along with the object con-
straints declared in the class.

For example:

class SimpleSum
rand bit [7:0] x, vy, z;
constraint c {z == x + y;}
endclass

task InlineConstraintDemo (SimpleSum p) ;
int success;
success = p.randomize () with {x < vy;};
endtask

Thisis the same example used before, however, randomize () ...with is used to introduce an additional con-
straintthat x < vy.

The randomize () ..with construct can be used anywhere an expression can appear. The constraint block fol-
lowing with can define all of the same constraint types and forms as would otherwise be declared in aclass.

The randomize () ..with constraint block can also reference local variables and task and function arguments,
eliminating the need for mirroring alocal state as member variables in the object class. The scope for variable
names in a constraint block, from inner to outer, is: randomize ()..with object class, automatic and loca
variables, task and function arguments, class variables, variables in the enclosing scope. The random-
ize ()..with classis brought into scope at the innermost nesting level.

In the example below, the randomize () ..with classis Foo.

class Foo;
rand integer Xx;
endclass

class Bar;
integer x;
integer y;

task doit (Foo f, integer x, integer z);
int result;
result = f.randomize() with {x < y + z;};
endtask
endclass

Copyright 2004 Accellera. All rights reserved. 147

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Inthe £ . randomize () with constraint block, x isamember of class Foo, and hidesthe x in class Bar. It also
hides the x argument in the doit () task. y isamember of Bar. z isaloca argument.
12.7 Disabling random variables with rand_mode()
The rand mode () method can be used to control whether arandom variableis active or inactive. When aran-
dom variableisinactive, it is treated the same asiif it had not been declared rand or rande. Inactive variables
are not randomized by the randomize () method, and their values are treated as state variables by the solver.
All random variables areinitially active.
The syntax for the rand_mode () method is:

task object[.random variable]::rand mode(bit on off);
or

function int object.random variable::rand mode () ;

object is any expression that yields the object handle in which the random variable is defined.

random variable is the name of the random variable to which the operation is applied. If it is not specified
(only allowed when called as atask), the action is applied to all random variables within the specified object.

When called as atask, the argument to the rand_mode method determines the operation to be performed:

Table 12-1: rand_mode argument

Value Meaning Description

0 OFF Sets the specified variables to inactive so that they are not ran-
domized on subsequent callsto the randomize () method.

1 ON Sets the specified variables to active so that they are randomized
on subsequent calls to the randomi ze () method.

For unpacked array variables, random variable can specify individual elements using the corresponding
index. Omitting the index resultsin al the elements of the array being affected by the call.

For unpacked structure variables, random_variable can specify individual members using the correspond-
ing member. Omitting the member resultsin all the members of the structure being affected by the call.

If the random variable is an object handle, only the mode of the variable is changed, not the mode of random
variables within that object (see global constraintsin Section 12.4.8).

A compiler error shall be issued if the specified variable does not exist within the class hierarchy or it exists
but is not declared as rand or rande.

When called as afunction, rand_mode () returns the current active state of the specified random variable. It
returns 1 if the variable is active (on), and O if the variable isinactive (oFF).

The function form of rand mode () only accepts singular variables, thus, if the specified variable is an
unpacked array, a single element must be selected viaits index.

Example:
class Packet;

rand integer source value, dest value;
. other declarations

148 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

endclass

int ret;

Packet packet a = new;

// Turn off all variables in object
packet a.rand mode(0) ;

// ... other code

// Enable source value

packet a.source value.rand mode (1) ;

ret = packet a.dest value.rand mode() ;
This example first disables all random variables in the object packet a, and then enables only the
source_value variable. Finaly, it setsthe ret variable to the active status of variable dest _value.

The rand mode () method is built-in and cannot be overridden.

12.8 Controlling constraints with constraint_mode()

The constraint _mode () method can be used to control whether a constraint is active or inactive. When a
congtraint isinactive, it is not considered by the randomize () method. All constraints areinitially active.

The syntax for the constraint_mode () method is:
task object[.constraint identifier]::constraint mode(bit on off);
or
function int object.constraint identifier::constraint mode () ;
object is any expression that yields the object handle in which the constraint is defined.
congtraint_identifier isthe name of the constraint block to which the operation is applied. The constraint name
can be the name of any constraint block in the class hierarchy. If no constraint name is specified (only allowed
when called as atask), the operation is applied to all constraints within the specified object.
When called as a task, the argument to the constraint mode task method determines the operation to be

performed:

Table 12-2: constraint_mode argument

Value Meaning Description

0 OFF Sets the specified constraint block to inactive so that it is not
enforced by subsequent callsto the randomize () method.

1 ON Setsthe specified constraint block to active so that it is considered
on subsequent calls to the randomize () method.

A compiler error shall beissued if the specified constraint block does not exist within the class hierarchy.

When called as a function, constraint mode () returns the current active state of the specified constraint
block. It returns 1 if the constraint is active (ON), and 0 if the constraint is inactive (OFF).

Example:

Copyright 2004 Accellera. All rights reserved. 149

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

class Packet;

rand integer source value;

constraint filterl { source value > 2 * m; }
endclass

function integer toggle rand(Packet p);
if (p.filterl.constraint mode())
p.filterl.constraint mode (0) ;
else
p.filterl.constraint mode (1) ;

toggle rand = p.randomize() ;
endfunction

In this example, the toggle rand function first checks the current active state of the constraint filterl in the
specified packet object p. If the constraint is active, the function deactivates it; if it is inactive, the function
activates it. Finaly, the function calls the randomize method to generate a new random value for variable
source value.

The constraint mode () method is built-in and cannot be overridden.

12.9 Dynamic constraint modification

There are several ways to dynamically modify randomization constraints;
— Implication and i £...else style constraints allow declaration of predicated constraints.

— Constraint blocks can be made active or inactive using the constraint _mode () built-in method. Ini-
tially, all constraint blocks are active. Inactive constraints are ignored by the randomize () function.

— Random variables can be made active or inactive using the rand mode () built-in method. Initialy, all
rand and randc variables are active. Inactive variables are ignored by the randomize () function.

— Theweightsin adist constraint can be changed, affecting the probability that particular valuesin the set
are chosen.

12.10 In-line random variable control

The randomize () method can be used to temporarily control the set of random and state variables within a
class instance or object. When the randomize method is called with no arguments, it behaves as described in
the previous sections, that is, it assigns new values to al random variables in an object—those declared as
rand Of rande—such that all of the constraints are satisfied. When randomize is called with arguments, those
arguments designate the complete set of random variables within that object; all other variables in the object
are considered state variables. For example, consider the following class and calls to randomize:

class CA;
rand byte x, vy;
byte v, w;

constraint cl { X < Vv & y > w);
endclass

CA a = new;

a.randomize () ; // random variables: x, y state variables: v, w
a.randomize(x) ; // random variables: x state variables: y, v, w
a.randomize(v, w); // random variables: v, w state variables: x, y
a.randomize(w, X); // random variables: w, X state variables: y, v

150 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

This mechanism controls the set of active random variables for the duration of the call to randomize, which is
conceptually eguivalent to making a set of calls to the rand_mode () method to disable or enable the corre-
sponding random variables. Calling randomize () with arguments allows changing the random mode of any
class property, even those not declared as rand or rande. This mechanism, however, does not affect the cycli-
cal random mode; it cannot change a non-random variable into acyclical random variable (randc), and cannot
change a cyclical random variable into a non-cyclical random variables (change from randc to rand).

The scope of the arguments to the randomize method is the object class. Arguments are limited to the names of
properties of the calling object; expressions are not allowed. The random mode of local class members can
only be changed when the call to randomize has access to those properties, that is, within the scope of the class
in which the local members are declared.

12.10.1 In-line constraint checker

Normally, calling the randomize method of a class that has no random variables causes the method to behave
as a checker, that is, it assigns no random values, and only returns a status. one if al constraints are satisfied
and zero otherwise. The in-line random variable control mechanism can also be used to force the randomize()
method to behave as a checker.

The randomize method accepts the special argument nul1 to indicate no random variables for the duration of
thecal. That is, al class members behave as state variables. This causes the randomize method to behave as a
checker instead of a generator. A checker evaluates all constraints and simply returns one if all constraints are
satisfied, and zero otherwise. For example, if class ca defined above executes the following call:

success = a.randomize(null); // no random variables

Then the solver considers all variables as state variables and only checks whether the constraint is satisfied,
namely, that therelation (x < v && y > w) istrueusing the current values of x, y, v, and w.

12.11 Randomization of scope variables — std::randomize()

The built-in class randomize method operates exclusively on class member variables. Using classes to model
the data to be randomized is a powerful mechanism that enables the creation of generic, reusable objects con-
taining random variables and constraints that can be later extended, inherited, constrained, overridden,
enabled, disabled, merged with or separated from other objects. The ease with which classes and their associ-
ated random variables and constraints can be manipulated make classes an ideal vehicle for describing and
manipulating random data and constraints. However, some less-demanding problems that do not require the
full flexibility of classes, can use a simpler mechanism to randomize data that does not belong to a class. The
scope randomize function, std: : randomize (), enables users to randomize datain the current scope, without
the need to define a class or instantiate a class object.

The syntax of the scope randomize functioniis:

scope_randomize ::= /I not in Annex A
[std::] randomize ([variable _identifier_list]) [with constraint_block]

Syntax 12-10—scope randomize function syntax (not in Annex A)
The scope randomize function behaves exactly the same as a class randomize method, except that it operates
on the variables of the current scope instead of class member variables. Arguments to this function specify the
variablesthat are to be assigned random values, i.e., the random variables.
For example:
module stim;

bit [15:0] addr;
bit [31:0] data;

Copyright 2004 Accellera. All rights reserved. 151

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

function bit gen stim() ;
bit success, rd wr;

success = randomize(addr, data, rd wr); // call std::randomize
return rd wr ;
endfunction
endmodule

The function gen _stim cals std: :randomize () with three variables as arguments. addr, data, and
rd_wr. Thus, std: :randomize () assigns new random variables to those variables that are visible in the
scope of the gen stim function. Note that addr and data have module scope, whereas rd_wr has scope
local to the function. The above example can also be written using a class:

class stimc;
rand bit [15:0] addr;
rand bit [31:0] data;
rand bit rd wr;
endclass

function bit gen stim(stimc p);
bit success;
success = p.randomize () ;
addr = p.addr;
data = p.data;
return p.rd wr;
endfunction

However, for this simple application, the scope randomize function leads to a straightforward i mplementation.

The scope randomize function returns 1 if it successfully sets all the random variables to valid values, other-
wiseit returns 0. If the scope randomize function is called with no arguments then it behaves as a checker, and
simply returns status.

12.11.1 Adding constraints to scope variables - std::randomize() with

The std: :randomize () with form of the scope randomize function allows users to specify random con-
straints to be applied to the local scope variables. When specifying constraints, the arguments to the scope ran-
domize function become random variables, all other variables are considered state variables.

task stimulus(int length);
int a, b, ¢, success;

success = std::randomize(a, b, ¢) with { a <b ; a + b < length };
success = std::randomize(a, b) with { b - a > length };
endtask

The task stimulus above calls std: : randomize twice resulting in two sets of random values for its local
variables a, b, and c. In the first call variables a and b are constrained such that variable a is less than b, and
their sum isless than the task argument length, which is designated as a state variable. In the second call, vari-
ables a and b are constrained such that their difference is greater than state variable length.

152 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

12.12 Random number system functions and methods

12.12.1 $urandom

The system function surandom provides a mechanism for generating pseudorandom numbers. The function
returns a new 32-bit random number each timeit is called. The number shall be unsigned.

The syntax for $urandom is:

function int unsigned Surandom [(int seed)] ;
The seed isan optional argument that determines the sequence of random numbers generated. The seed can be
any integral expression. The random number generator shall generate the same sequence of random numbers
every time the same seed is used.
The random number generator is deterministic. Each time the program executes, it cycles through the same
random sequence. This sequence can be made nondeterministic by seeding the $urandom function with an
extrinsic random variable, such asthetime of day.

For example:

bit [64:1] addr;

Surandom(254) ; // Initialize the generator
addr = {$urandom, $urandom }; // 64-bit random number
number = Surandom & 15; // 4-bit random number

The $urandom function is similar to the $random system function, with two exceptions. $urandom returns
unsigned numbers and is automatically thread stable (see Section 12.13.2).

12.12.2 $urandom_range()
The $urandom_range () function returns an unsigned integer within a specified range.
The syntax for $urandom_range () is:

function int unsigned S$urandom range(int unsigned maxval,
int unsigned minval = 0);

The function shall return an unsigned integer in the range maxval ... minval.

Example: val = $urandom range (7, 0) ;

If minval isomitted, the function shall return avaluein the range maxval ... 0.
Example: val = $urandom range(7) ;

If maxval islessthan minval, the arguments are automatically reversed so that the first argument is larger
than the second argument.

Example: val = $urandom range(0,7) ;
All of the three previous examples produce a value in the range of 0 to 7, inclusive.
$urandom_range () isautomatically thread stable (see Section 12.13.2).
12.12.3 srandom()

The s srandom () method allows manually seeding the Random Number Generator (RNG) of objects or
threads. The RNG of a process can be seeded using the srandom () method of the process (see Section 9.9).

Copyright 2004 Accellera. All rights reserved. 153

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

The prototype of the srandom () method is:
function void srandom(int seed) ;

The srandom () method initializes an object’s random number generator using the value of the given seed.

12.12.4 get_randstate()

The get_randstate () method retrieves the current state an object’'s Random Number Generator (RNG).
The state of the RNG associated with a process is retrieved using the get _randstate () method of the pro-
cess (see Section 9.9).

The prototype of the get _randstate () method is:
function string get randstate();

The get_randstate () method returns a copy of the interna state of the RNG associated with the given
object.

The RNG state is a string of unspecified length and format. The length and contents of the string are imple-
mentation dependent.

12.12.5 set_randstate()

The set_randstate () method sets the state of an object’s Random Number Generator (RNG). The state of
the RNG associated with a process is set using the set randstate() method of the process (see
Section 9.9).

The prototype of the set _randstate () method is:
function void set randstate(string state);
The set_randstate () method copies the given state into the internal state of an object's RNG.

The RNG dtate is a string of unspecified length and format. Calling set _randstate () with a string value
thaa was not obtained from get randstate()—or from a different implementation of
get_randstate () —isundefined.

12.13 Random stability

The Random Number Generator (RNG) is localized to threads and objects. Because the sequence of random
values returned by a thread or object is independent of the RNG in other threads or objects, this property is
called random stability. Random stability applies to:

— The system randomization calls, $urandom () and $urandom range ().
— The object and process random seeding method, srandom () .

— The object randomization method, randomize () .
Testbenches with this feature exhibit more stable RNG behavior in the face of small changes to the user code.

Additionally, it enables more precise control over the generation of random values by manually seeding
threads and objects.

12.13.1 Random stability properties

Random stability encompasses the following properties:
— Thread stability

154 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Each thread has an independent RNG for all randomization system calls invoked from that thread. When
anew thread is created, its RNG is seeded with the next random value from its parent thread. This prop-
erty is called hierarchical seeding.

Program and thread stability is guaranteed as long as thread creation and random number generation is
done in the same order as before. When adding new threads to an existing test, they can be added at the
end of acode block in order to maintain random number stability of previously created work.

— Object stahility
Each classinstance (object) has an independent RNG for all randomization methods in the class. When an
object is created using new, its RNG is seeded with the next random value from the thread that creates the
object.
Object stability is guaranteed as long as object and thread creation, as well as random number generation,

are done in the same order as before. In order to maintain random number stability, new objects, threads
and random numbers can be created after existing objects are created.

— Manual seeding

All RNG's can be manually seeded. Combined with hierarchical seeding, this facility allows users to
define the operation of a subsystem (hierarchy subtree) completely with a single seed at the root thread of
the system.

12.13.2 Thread stability

Random values returned from the $urandom system call are independent of thread execution order. For exam-
ple:

integer x, vy, z;
fork //set a seed at the start of a thread
begin process::self.srandom(100); x = Surandom; end
//set a seed during a thread

begin y = Surandom; process::self.srandom(200); end
// draw 2 values from the thread RNG
begin z = Surandom + Surandom ; end
join

The above program fragment illustrates several properties:

— Thread locality. The values returned for %, y and z are independent of the order of thread execution. Thisis
an important property because it allows devel opment of subsystems that are independent, controllable, and
predictable.

— Hierarchical seeding. When athread is created, its random state is initialized using the next random value
from the parent thread as a seed. The three forked threads are all seeded from the parent thread.

Each thread is seeded with a unique value, determined solely by its parent. The root of athread execution sub-

tree determines the random seeding of its children. This allows entire subtrees to be moved, and preserves their
behavior by manually seeding their root thread.

12.13.3 Object stability

The randomize () method built into every class exhibits object stability. This is the property that cals to
randomize () in one instance are independent of callsto randomize () in other instances, and independent
of callsto other randomize functions.

For example:

class Foo;

Copyright 2004 Accellera. All rights reserved. 155

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

rand integer x;
endclass

class Bar;
rand integer y;
endclass

initial begin
Foo foo = new() ;
Bar bar = new() ;
integer z;
void’ (foo.randomize ()) ;
// z = $random;
void’ (bar.randomize ()) ;
end

— Thevaluesreturned for foo.x and bar .y are independent of each other.

— Thecalsto randomize () are independent of the $random system call. If one uncommentsthelinez =
$random above, there is no change in the values assigned to foo.x and bar . y.

— Each instance has a unique source of random values that can be seeded independently. That random seed is
taken from the parent thread when the instance is created.

— Objects can be seeded at any time using the srandom () method.

class Foo;
function new (integer seed) ;
//set a new seed for this instance
this.srandom (seed) ;
endfunction
endclass

Once an object is created there is no guarantee that the creating thread can change the object’s random state
before another thread accesses the object. Therefore, it is best that objects self-seed within their new method
rather than externally.

An object’s seed can be set from any thread. However, athread's seed can only be set from within the thread
itsalf.

12.14 Manually seeding randomize

Each object maintains its own internal random number generator, which is used exclusively by its random-
ize () method. This allows objects to be randomized independent of each other and of calls to other system
randomization functions. When an object is created, its random number generator (RNG) is seeded using the
next value from the RNG of the thread that creates the object. This processis called hierarchical object seed-

ing.

Sometimesiit is desirable to manually seed an object’s RNG using the srandom () method. This can be done
either in a class method, or external to the class definition:

An example of seeding the RNG internally, as a class method is:

class Packet;
rand bit[15:0] header;

function new (int seed) ;
this.srandom(seed) ;

156 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

endfunction
endclass
An example of seeding the RNG externdly is:

Packet p = new(200); // Create p with seed 200.
p.srandom(300) ; // Re-seed p with seed 300.

Cadling srandom () in an object’s new () function, assures the object’s RNG is set with the new seed before
any class member values are randomized.

12.15 Random weighted case — randcase

statement_item ::= [/l from Annex A.6.4

| randcase_statement

randcase_statement ::= // from Annex A.6.7
randcase randcase _item { randcase item} endcase

randcase_item ::= expression : statement_or_null

Syntax 12-11—randcase syntax (excerpt from Annex A)

The keyword randcase introduces a case statement that randomly selects one of its branches. The randcase
item expressions are non-negative integral valuesthat constitute the branch weights. An item’s weight divided
by the sum of all weights gives the probability of taking that branch. For example:

randcase
3 :x =1;
1 : x = 2;
4 : x = 3;
endcase

The sum of all weightsis 8, so the probability of taking the first branch is 0.375, the probability of taking the
second is 0.125, and the probability of taking the third is 0.5.

If abranch specifies a zero weight then that branch is not taken. If all randcase items specify zero weights then
no branch is taken and awarning can be issued.

The randcase weights can be arbitrary expressions, not just constants. For example:
byte a, b;

randcase
a+b:x=1;
a-b:x=2;
a ™ ~b : x = 3;
12'b800 : x = 4;
endcase

|
[\S)

The precision of each weight expression is self-determined. The sum of the weights is computed using stan-
dard addition semantics (maximum precision of all weights), where each summand is unsigned. Each weight
expression is evaluated at most once (implementations can cache identical expressions) in an unspecified
order. In the example above, the first three weight expressions are computed using 8-bit precision, the fourth
expression is computed using 12-hit precision; the resulting weights are added as unsigned values using 12-bit
precision. The weight selection then uses unsigned 12-bit comparison.

Copyright 2004 Accellera. All rights reserved. 157

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Each call to randcase retrieves one random number in the range zero to the sum of the weights. The weights
are then selected in declaration order: smaller random numbers correspond to the first (top) weight statements.

Randcase statements exhibit thread stability. The random numbers are obtained from $urandom range (),
thus, random values drawn are independent of thread execution order. This can result in multiple calls to
$urandom_range () to handle greater than 32 bits.

12.16 Random sequence generation — randsequence

Parser generators, such as yacc, use a Backus-Naur Form (BNF) or similar notation to describe the grammar of
the language to be parsed. The grammar is thus used to generate a program that is able to check if a stream of
tokens represents a syntactically correct utterance in that language. SystemVerilog's sequence generator
reversesthis process. It uses the grammar to randomly create a correct utterance (i.e., a stream of tokens) of the
language described by the grammar. The random segquence generator is useful for randomly generating struc-
tured sequences of stimulus such asinstructions or network traffic patterns.

The sequence generator uses a set of rules and productions within a randsequence block. The syntax of the
randsequence block is;

statement_item ::= [/ from Annex A.6.4

| randsequence_statement

randsequence_statement ::= randsequence ([production_identifier]) [/l from Annex A.6.12
production { production }
endsequence

production ::= [function_data type] production_name[(tf_port_list)]: rs rule{ |rs_rule} ;
rs rule::=rs_production_list [:= expression [rs_code block]]
rs_production_list ::=
rs prod { rs_prod}
| rand join [(expression)] production_item production_item { production_item}
rs _code block ::={ { data declaration} { statement_or null } }
rs_prod ::=
production_item
| rs_code block
| rs if_else
| rs_repeat
| rs_case
production_item ::= production_identifier [(list_of arguments)]
rs_ if else::=if (expression) production_item [else production_item]
rs repeat ::= repeat (expression) production_item
rs_case::= case (expression) rs _case item{ rs_case item} endcase
rs case item::=
expression{ , expression } : production_item
| default [:] production_item

Syntax 12-12—randsequence syntax (excerpt from Annex A)

A randsequence grammar is composed of one or more productions. Each production contains a name and a
list of production items. Production items are further classified into terminals and nonterminals. Nonterminals
are defined in terms of terminals and other nonterminals. A terminal isan indivisible item that needs no further
definition than its associated code block. Ultimately, every nonterminal is decomposed into its terminals. A

158 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

production list contains a succession of production items, indicating that the items must be streamed in
sequence. A single production can contain multiple production lists separated by the | symbol. Production lists
separated by a | imply a set of choices, which the generator will make at random.

A simple exampleillustrates the basic concepts:

randsequence (main)

main : first second done ;
first : add | dec ;

second : pop | push ;

done { $display("done"); } ;
add { $display("add"); } ;
dec { $display("dec"); } ;
pop { sdisplay("pop"); } ;
push { $display("push"); } ;

endsequence

The production main is defined in terms of three nonterminals. first, second, and done. When main is
chosen, it generates the sequence, first, second, and done. When first isgenerated, it is decomposed into
its productions, which specifies arandom choice between add and dec. Similarly, the second production spec-
ifies a choice between pop and push. All other productions are terminals; they are completely specified by
their code block, which in the example displays the production name. Thus, the grammar leads to the follow-
ing possible outcomes:

add pop done
add push done
dec pop done
dec push done

When the randsequence statement is executed, it generates agrammar-driven stream of random productions.
As each production is generated, the side effects of executing its associated code blocks produce the desired
stimulus. In addition to the basic grammar, the sequence generator provides for random weights, interleaving
and other control mechanisms. Although the randsequence Statement does not intrinsically create a loop, a
recursive production will cause looping.

The randsequence Statement creates an automatic scope. All production identifiers are local to the scope. In
addition, each code block within the randsequence block creates an anonymous automatic scope. Hierarchi-
cal references to the variables declared within the code blocks are not allowed. To declare a static variable, the
static prefix must be used. The randsequence keyword can be followed by an optional production name
(inside the parenthesis) that designates the name of the top-level production. If unspecified, thefirst production
becomes the top-level production.

12.16.1 Random production weights

The probability that a production list is generated can be changed by assigning weights to production lists. The
probability that a particular production list is generated is proportional to its specified weight.

production ::= [function_data type] production_name[(tf_port_list)]: rs rule{ |rs_rule} ;
rs rule ::=rs_production_list [:= expression [rs_code block]]

The : = operator assigns the weight specified by the expression to its production list. Weight expression must
evaluate to integral non-negative values. A weight is only meaningful when assigned to alternative produc-
tions, that is, production list separated by a |. Weight expressions are evaluated when their enclosing produc-
tion is selected, thus allowing weights to change dynamically. For example, the first production of the
previous exampl e can be re-written as:

first : add := 3

Copyright 2004 Accellera. All rights reserved. 159

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

| dec := 2

7

This defines the production £irst in terms of two weighted production lists add and dec. The production add
will be generated with 60% probability and the production dec will be generated with 40% probability.

If no weight is specified, a production shall use aweight of 1. If only some weights are specified, the unspeci-
fied weights shall use aweight of 1.

12.16.2 If...else production statements

A production can be made conditionally by means of an if...else production statement. The syntax of the
if...else production statement is:

rs if else::=if (expression) production_item [else production_item]

The expression can be any expression that evaluates to a boolean value. If the expression evaluates to true, the
production following the expression is generated, otherwise the production following the optional else state-
ment is generated. For example:

randsequence ()

PP PO : if (depth < 2) PUSH else POP ;

PUSH : { ++depth; do push(); };
POP : { --depth; do pop(); };
endsequence

This example defines the production pp_op. If the variable depth is less than 2 then production pusH is gener-
ated, otherwise production pop is generated. The variable depth is updated by the code blocks of both the
pUsH and pop productions.

12.16.3 Case production statements

A production can be selected from a set of aternatives using a case production statement. The syntax of the
case production statement is:

rs case::= case (expression) rs case item{ rs case item} endcase
rs case item::=
expression{ , expression } : production_item
| default [:] production_item

The case production statement is analogous to the procedural case statement except as noted below. The case
expression is evaluated, and its value is compared against the value of each case-item expression, which are
evaluated and compared in the order in which they are given. The production generated is the one associated
with the first case-item expression matching the case expression. If no matching case-item expression is found
then the production associated with the optional default item is generated, or nothing if there no default item.
Multiple default statements in one case production statement shall be illegal. Case-item expressions separated
by commas allow multiple expressions to share the production. For example:

randsequence ()
SELECT : case (device & 7)
0 : NETWORK
1, 2 : DISK
default : MEMORY
endcase ;

160 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

endsequence

This example defines the production SELECT with a case Statement. The case expression (device & 7) iS
evaluated and compared against the two case-item expressions. If the expression matches 0, the production
NETWORK is generated, and if it matches 1 or 2 the production DIsk is generated. Otherwise the production
MEMORY iS generated.

12.16.4 Repeat production statements

The repeat production statement is used to iterate over a production a specified number of times. The syntax
of the repeat production statement is:

rs_repeat ::= repeat (expression) production_item

The repeat expression must evaluate to a non-negative integral value. That value specifies the number of
times that the corresponding production is generated. For example:

randsequence ()
PUSH OPER : repeat($Surandom range(2, 6)) PUSH ;
PUSH

endsequence

Inthisexample the pusa_oPER production specifies that the pusH production be repeated a random number of
times (between 2 and 6) depending on by the value returned by $urandom_range ().

The repeat production statement itself cannot be terminated prematurely. A break statement will terminate
the entire randsequence block (see Section 12.16.6).

12.16.5 Interleaving productions — rand join

The rand join production control is used to randomly interleave two or more production sequences while
maintaining the relative order of each sequence. The syntax of the rand join production control is:

rs_production_list ::=
rs prod { rs prod}
| rand join [(expression)] production_item production_item { production_item}

For example:

randsequence (TOP)
TOP : rand join S1 S2 ;

S1 : A B ;
S2 : CD ;
endsequence

The generator will randomly produce the following sequences.

(OO TO T
PP ononw
Ow®» U0 wan
WwoYwwuouuo

The optional expression following the rand join keywords must be areal number in therange 0.0to 1.0. The

Copyright 2004 Accellera. All rights reserved. 161

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

value of this expression represents the degree to which the length of the sequences to be interleaved affects the
probability of selecting a sequence. A sequence’s length is the number of productions not yet interleaved at a
giventime. If the expression is 0.0, the shortest sequences are given higher priority. If the expressionis 1.0, the
longest sequences are given priority. For instance, using the previous example:

TOP : rand join (0.0) S1 S2 ;
Gives higher priority tothesequencess. A B CD CD A B

TOP : rand join (1.0) S1 S2 ;
Gives higher priority tothesequences: A ¢ B D A CDB CABD CADB

If unspecified, the generator used the default value of 0.5, which does not prioritize any sequence length.

At each step, the generator interleaves nonterminal symbols to depth of one.

12.16.6 Aborting productions — break and return

Two procedural statements can be used to terminate a production prematurely: break and return. These two
statements can appear in any code block; they differ in what they consider the scope from which to exit.

The break Statement terminates the sequence generation. When abreak statement is executed from within a
production code block, it forces ajump out of the randsequence block. For example:

randsequence ()
WRITE : SETUP DATA ;
SETUP : { if(fifo length >= max _length) break; } COMMAND ;
DATA

endsequence

next statement

When the example above executesthe break statement within the seTup production, the comMaND production
is not generated, and execution continues on the line labeled next statement. Use of the break statement
within aloop statement behaves as defined in Section 8.6. Thus, the break statement terminates the smallest
enclosing looping statement, otherwise the randsequence block.

The return statement aborts the generation of the current production. When a return statement is executed
from within a production code block, the current production is aborted. Sequence generation continues with
the next production following the aborted production. For example:

randsequence ()
TOP : P1 P2 ;
Pl : ABC ;
P2 : A { if(flag == 1) return; } B C ;
A : { Sdisplay("A"); } ;
B : { if(flag == 2) returmn; S$display("B"); } ;
c : { $display("c"); } ;
endsequence

Depending on the value of variable f£1ag, the example above displays the following:

flag == 0 ==> A B CABC
flag == 1 ==> A B CA
flag == 2 ==> A CAUC
When f1lag == 1, production p2 isaborted in the middle, after generating 2. When £1ag == 2, production

B isaborted twice (once as part of p1 and once as part of p2), but each time, generation continues with the next
production, c.

162 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

12.16.7 Value passing between productions

Data can be passed down to a production about to be generated, and generated productions can return data to
the nonterminals that triggered their generation. Passing data to a production is similar to atask call, and uses
the same syntax. Returning data from a production requires that a type be declared for the production, which
uses syntax similar to afunction declaration.

Productions that accept data include a formal argument list. The syntax for declaring the arguments to a pro-
duction is similar to atask prototype; the syntax for passing data to the production is the same as atask call.

production ::= [function_data type] production_name[(tf_port_list)]: rs rule{ |rs_rule} ;
production_item ::= production_identifier [(list_of arguments)]

For example, the first example above could be written as:

randsequence (main)

main : first second gen ;

first : add | dec ;

second : pop | push ;

add : gen("add")

dec : gen("dec") ;

pop : gen("pop")

push : gen("push") ;

gen(string s = "done") : { $display(s }; } ;
endsequence

In this example, the production gen accepts a string argument whose default is "done. Five other produc-
tions generate this production, each with a different argument (the one in main uses the default).

A production creates a scope, which encompasses all its rules and code blocks. Thus, arguments passed down
to a production are available throughout the production.

Productions that return data require a type declaration. The optional return type precedes the production. Pro-
ductions that do not specify areturn type shall assume a void return type.

A valueisreturned from a production by using the return with an expression. When the return statement is
used with a production that returns avalue, it must specify an expression of the correct type, just like non-void
functions. The return statement assigns the given expression to the corresponding production. The return
value can be read in the code blocks of the production that triggered the generation of the production returning
a value. Within these code blocks, return values are accessed using the production name plus an optional
indexing expression. Within each production, a variable of the same name isimplicitly declared for each pro-
duction that returns avalue.

If the same production appears multiple times then a one-dimensional array that starts at 1 is implicitly
declared. For example:

randsequence(bin op)

void bin op : value operator value // void type is optional
{ $display("%s %b %b", operator, valuel[l], value([2]); }
bit [7:0] wvalue : { return $urandom } ;
string operator : add := 5 { return "+" ; }
| dec := 2 { return "-n" ; }
| mult := 1 { return "*" ; }
endsequence

In the example above, the operator and value productions return a string and an 8-bit value, respectively. The

Copyright 2004 Accellera. All rights reserved. 163

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

production bin_op includes these two value-returning productions. Therefore, the code block associated with
production bin_op has access to the following implicit variable declarations:

bit [7:0] value [1:2];
string operator;

Accessing these implicit variables yields the values returned from the corresponding productions. When exe-
cuted, the example above displays a simple three-item random sequence: an operator followed by two 8-hit
values. The operators +, -, and *are chosen with adistribution of 5/8, 2/8, and 1/8, respectively.

Only the return values of productions aready generated (i.e., to the left of the code block accessing them) can
be retrieved. Attempting to read the return value of a production that has not been generated resultsin an unde-
fined value. For example:

X : A {int y = B;} B ; // invalid use of B
X : A {int y = A[2];} B A ; // invalid use of A[2]
X : A{int y = A;} B {int § = A + B;} ; // valid

The sequences produced by randsequence can be driven directly into a system, as aside effect of production
generation, or the entire sequence can be generated for future processing. For example, the following function
generates and returns a queue of random numbersin the range given by its arguments. The first and last queue
item correspond to the lower and upper bounds, respectively. Also, the size of the queue is randomly selected
based on the production weights.

function int[$] GenQueue (int low, int high) ;

int[$] q;

randsequence ()
TOP : BOUND (low) LIST BOUND (high) ;
LIST : LIST ITEM:= 8 { a={gqg, 1ITEM }; }

| ITEM :=2 {g={gq ITEM }; }

int ITEM : { return $urandom range(low, high); } ;
BOUND (int b) : { g = { g, b }; } ;

endsequence

GenQueue = q;

endfunction

When the randsequence in function GengQueue executes, it generates the Top production, which causes
three productions to be generated: BounD with argument low, L.IST, and BounND with argument high. The
BOUND production simply appends its argument to the queue. The LIsT production consists of a weighted
LIST ITEM production and an 1TEM production. The LIST ITEM production isgenerated with 80% probabil-
ity, which causes the LIST production to be generated recursively, thereby postponing the generation of the
ITEM production. The selection between L1sT 1TEM and ITEM is repeated until the TTEM production is
selected, which terminates the L1sT production. Each time the 1TEM production is generated, it produces a
random number in the indicated range, which is later appended to the queue.

The following example uses a randsequence block to produce random traffic for aDSL packet network.

class DSL; ... endclass // class that creates valid DSL packets

randsequence (STREAM)

STREAM : GAP DATA := 80
| DATA 1= 20 ;
DATA : PACKET (0) = 94 { transmit(PACKET); }
| PACKET (1) = 6 { transmit(PACKET); } ;

164 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
DSL PACKET (bit bad) : { DSL d = new;
if(bad) d.crc *= 23; // mangle crc
return d;

Yo
GAP: { ## {$urandom range(1, 20)}; };
endsequence

In this example, the traffic consists of a stream of (good and bad) data packets and gaps. The first production,
STREAM, specifies that 80% of the time the traffic consists of a cap followed by some paTa, and 20% of the
timeit consists of just bATA (no GaP). The second production, DATA, specifies that 94% of all data packets are
good packets, and the remaining 6% are bad packets. The packeT production implements the bsL packet cre-
ation; if the production argument is 1 then abad packet is produced by mangling the crc of avalid pst. packet.
Finally, the cap production implements the transmission gaps by waiting a random number of cycles between
1and 20.

Copyright 2004 Accellera. All rights reserved. 165

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Section 13
Interprocess Synchronization and Communication

13.1 Introduction (informative)

High-level and easy-to-use synchronization and communication mechanism are essential to control the kinds
of interactions that occur between dynamic processes used to model a complex system or a highly reactive
testbench. Verilog provides basic synchronization mechanisms (i.e., -> and @), but they are all limited to
static objects and are adequate for synchronization at the hardware level, but fall short of the needs of a highly
dynamic, reactive testbench. At the system level, an essentia limitation of Verilog is its inability to create
dynamic events and communication channels, which match the capability to create dynamic processes.

SystemVerilog adds a powerful and easy-to-use set of synchronization and communication mechanisms, all of
which can be created and reclaimed dynamically. SystemVerilog adds a semaphore built-in class, which can
be used for synchronization and mutual exclusion to shared resources, and a mailbox built-in class that can be
used as a communication channel between processes. SystemVerilog also enhances Verilog's named event
data type to satisfy many of the system-level synchronization requirements.

Semaphores and mailboxes are built-in types, nonetheless, they are classes, and can be used as base classes for
deriving additional higher level classes. These built-in classes reside in the built-in std package (see Section
7.10.1), thus, they can be re-defined by user codein any other scope.

13.2 Semaphores

Conceptually, a semaphore is a bucket. When a semaphore is allocated, a bucket that contains a fixed number
of keysis created. Processes using semaphores must first procure a key from the bucket before they can con-
tinue to execute. If a specific process requires akey, only afixed number of occurrences of that process can be
in progress simultaneously. All others must wait until a sufficient number of keys is returned to the bucket.
Semaphores are typically used for mutual exclusion, access control to shared resources, and for basic synchro-
nization.

An example of creating a semaphoreis:
semaphore smTx;

Semaphore is abuilt-in class that provides the following methods:
— Create a semaphore with a specified number of keys: new ()
— Obtain one or more keys from the bucket: get ()
— Return one or more keysinto the bucket: put ()
— Try to obtain one or more keys without blocking: try get ()
13.2.1 new()
Semaphores are created with the new () method.
The prototype for semaphorenew () is:
function new(int keyCount = 0);
The KeyCount specifies the number of keysinitially allocated to the semaphore bucket. The number of keysin
the bucket can increase beyond KeyCount when more keys are put into the semaphore than are removed. The

default value for KeyCount is 0.

Thenew () function returns the semaphore handle, or nul1 if the semaphore cannot be created.

166 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

13.2.2 put()
The semaphore put () method is used to return keys to a semaphore.
The prototype for put () is:
task put (int keyCount = 1);
keyCount specifies the number of keys being returned to the semaphore. The default is 1.

When the semaphore .put () task is called, the specified number of keys are returned to the semaphore. If a
process has been suspended waiting for a key, that process shall execute if enough keys have been returned.

13.2.3 get()
The semaphore get () method is used to procure a specified number of keys from a semaphore.
The prototype for get () is:
task get (int keyCount = 1);
keyCount specifies the required number of keys to obtain from the semaphore. The default is 1.

If the specified number of keys are available, the method returns and execution continues. If the specified
number of key are not available, the process blocks until the keys become available.

The semaphore waiting queue is First-In First-Out (FIFO). This does not guarantee the order in which pro-
cesses arrive at the queue, only that their arrival order shall be preserved by the semaphore.

13.2.4 try_get()

The semaphoretry get () method isused to procure a specified number of keys from a semaphore, but with-
out blocking.

The prototype for try get () is:
function int try get(int keyCount = 1);
keyCount specifies the required number of keys to obtain from the semaphore. The default is 1.
If the specified number of keys are available, the method returns 1 and execution continues. If the specified

number of key are not available, the method returns 0.

13.3 Mailboxes

A mailbox is a communication mechanism that allows messages to be exchanged between processes. Data can
be sent to a mailbox by one process and retrieved by another.

Conceptually, mailboxes behave like real mailboxes. When aletter is delivered and put into the mailbox, one
can retrieve the letter (and any data stored within). However, if the letter has not been delivered when one
checks the mailbox, one must choose whether to wait for the letter or retrieve the letter on subsequent trips to
the mailbox. Similarly, SystemVerilog's mailboxes provide processes to transfer and retrieve data in a con-
trolled manner. Mailboxes are created as having either a bounded or unbounded queue size. A bounded mail-
box becomes full when it contains the bounded number of messages. A process that attempts to place a
message into a full mailbox shall be suspended until enough room becomes available in the mailbox queue.
Unbounded mailboxes never suspend athread in a send operation.

An example of creating a mailbox is:

Copyright 2004 Accellera. All rights reserved. 167

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

mailbox mbxRcv;

Mailbox is abuilt-in class that provides the following methods:

— Create amailbox: new ()

— Place amessage in amailbox: put ()

— Try to place amessage in a mailbox without blocking: try put ()

— Retrieve amessage from amailbox: get () or peek ()

— Try to retrieve a message from a mailbox without blocking: try get () or try peek ()

— Retrieve the number of messages in the mailbox: num ()

13.3.1 new()
Mailboxes are created with the new () method.
The prototype for mailbox new () is:
function new(int bound = 0);
The new () function returns the mailbox handle, or nuil1 if the mailboxes cannot be created. If the bound
argument is zero then the mailbox is unbounded (the default) and a put () operation shall never block. If

bound iShon-zero, it represents the size of the mailbox queue.

The bound must be positive. Negative bounds are illegal and can result in indeterminate behavior, but imple-
mentations can issue awarning.

13.3.2 num()
The number of messages in a mailbox can be obtained viathe num () method.
The prototype for num () is:
function int num() ;
The num () method returns the number of messages currently in the mailbox.
The returned value should be used with care, since it is valid only until the next get () or put () is executed
on the mailbox. These mailbox operations can be from different processes than the one executing the num ()
erﬁtggd. Therefore, the validity of the returned value shall depend on the time that the other methods start and
13.3.3 put()
The put () method places a message in a mailbox.
The prototype for put () is:
task put(singular message) ;
Themessage isany singular expression, including object handles.

The put () method stores a message in the mailbox in strict FIFO order. If the mailbox was created with a
bounded queue the process shall be suspended until there is enough room in the queue.

168 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

13.3.4 try_put()
The try put () method attempts to place a message in a mailbox.
The prototype for try put () is:
function int try put(singular message) ;
Themessage isany singular expression, including object handles.
The try put () method stores a message in the mailbox in strict FIFO order. This method is meaningful only

for bounded mailboxes. If the mailbox is not full then the specified message is placed in the mailbox and the
function returns 1. If the mailbox is full, the method returns O.

13.3.5 get()
The get () method retrieves a message from a mailbox.
The prototype for get () is:

task get(ref singular message) ;
Themessage can be any singular expression, and it must be avalid left-hand side expression.
The get () method retrieves one message from the mailbox, that is, removes one message from the mailbox
queue. If the mailbox isempty then the current process blocks until amessageis placed in the mailbox. If there
is atype mismatch between the message variable and the message in the mailbox, aruntime error is generated.
Non-parameterized mailboxes are type-less, that is, a single mailbox can send and receive different types of
data. Thus, in addition to the data being sent (i.e., the message queue), a mailbox implementation must main-

tain the message data type placed by put (). Thisisrequired in order to enable the runtime type checking.

The mailbox waiting queue is FIFO. This does not guarantee the order in which processes arrive at the queue,
only that their arrival order shall be preserved by the mailbox.

13.3.6 try_get()
The try get () method attempts to retrieves a message from a mailbox without blocking.
The prototype for try get () is
function int try get(ref singular message) ;
The message can be any singular expression, and it must be avalid | eft-hand side expression.
The try get () method tries to retrieve one message from the mailbox. If the mailbox is empty, then the
method returns 0. If there is a type mismatch between the message variable and the message in the mailbox,

the method returns —1. If a message is available and the message type matches the type of the message vari-
able, the message is retrieved and the method returns 1.

13.3.7 peek()
The peek () method copies a message from a mailbox without removing the message from the queue.
The prototype for peek () is:

task peek(ref singular message) ;

The message can be any singular expression, and it must be avalid | eft-hand side expression.

Copyright 2004 Accellera. All rights reserved. 169

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

The peek () method copies one message from the mailbox without removing the message from the mailbox
gueue. If the mailbox is empty then the current process blocks until a messageis placed in the mailbox. If there
is atype mismatch between the message variable and the message in the mailbox, aruntime error is generated.
Note that calling peek () can cause one message to unblock more than one process. As long as a message

remains in the mailbox queue, any process blocked in either a peek () or get () operation shall become
unbl ocked.

13.3.8 try_peek()
The try peek () method attempts to copy a message from a mailbox without blocking.
The prototype for try peek () is:
function int try peek(ref singular message) ;
Themessage can be any singular expression, and it must be avalid left-hand side expression.
The try peek () method triesto copy one message from the mailbox without removing the message from the
mailbox queue. If the mailbox is empty, then the method returns 0. If there is a type mismatch between the

message variable and the message in the mailbox, the method returns—1. If amessage is available and the mes-
sage type matches, the type of the message variable, the message is copied and the method returns 1.

13.4 Parameterized mailboxes

The default mailbox is type-less, that is, a single mailbox can send and receive any type of data. Thisisavery
powerful mechanism that, unfortunately, can also result in run-time errors due to type mismatches between a
message and the type of the variable used to retrieve the message. Frequently, a mailbox is used to transfer a
particular message type, and, in that case, it is useful to detect type mismatches at compiletime.

Parameterized mailboxes use the same parameter mechanism as parameterized classes (see Section 11.23),
modules, and interfaces:

mailbox #(type = dynamic_type)
Where dynamic_type represents aspecial type that enables run-time type-checking (the default).
A parameterized mailbox of aspecific typeis declared by specifying the type:

typedef mailbox #(string) s_mbox;

s _mbox sm = new;
string s;

sm.put ("hello");
sm.get(s); // s <- "hello"

Parameterized mailboxes provide al the same standard methods as dynamic mailboxes. num (), new (),
get (), peek(),put (), try get(), try peek(), try put().

The only difference between a generic (dynamic) mailbox and a parameterized mailbox is that for a parameter-
ized mailbox, the compiler ensures that the put, try put, peek, try peek, get and try get methods are
compatible with the mailbox type, so that all type mismatches are caught by the compiler and not at run-time.

170 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

13.5 Event

In Verilog, named events are static objects that can be triggered viathe - > operator, and processes can wait for
an event to be triggered via the @ operator. SystemVerilog events support the same basic operations, but
enhance Verilog events in several ways. The most salient enhancement is that the triggered state of Verilog
named events has no duration, whereas in SystemVerilog this state persists throughout the time-step in which
the event triggered. Also, SystemVerilog events act as handles to synchronization queues, thus, they can be
passed as arguments to tasks, and they can be assigned to one another or compared.

Existing Verilog event operations (e and - >) are backward compatible and continue to work the same way
when used in the static Verilog context. The additional functionality described below works with all eventsin
either the static or dynamic context.

A SystemVerilog event provides a handle to an underlying synchronization object. When a process waits for an
event to be triggered, the process is put on a queue maintained within the synchronization object. Processes
can wait for a SystemVerilog event to be triggered either viathe e operator, or by using thewait () construct
to examine their triggered state. Events are triggered using the - > or the - >> operator.

event_trigger ::= // from Annex A.6.5
-> hierarchical_event_identifier ;
| ->>[delay_or_event_control] hierarchical_event_identifier ;

Syntax 13-1—Event trigger syntax (excerpt from Annex A)

The syntax to declare named events is discussed in Section 3.8.

13.5.1 Triggering an event

Named events are triggered via the - > operator.

Triggering an event unblocks all processes currently waiting on that event. When triggered, named events
behave like aone-shat, that is, the trigger state itself is not observable, only its effect. Thisis similar to the way

in which an edge can trigger a flip-flop but the state of the edge cannot be ascertained, i.e., if (posedge
clock) isillegal.

13.5.2 Nonblocking event trigger

Nonblocking events are triggered using the - >> operator.

The effect of the ->> operator is that the statement executes without blocking and it creates a nonblocking
assign update event in the time in which the delay control expires, or the event-control occurs. The effect of

this update event shall be to trigger the referenced event in the nonblocking assignment region of the smula-
tion cycle.

13.5.3 Waiting for an event
The basic mechanism to wait for an event to be triggered is via the event control operator, e.
@ hierarchical event identifier;
The @ operator blocks the calling process until the given event istriggered.
For atrigger to unblock a process waiting on an event, the waiting process must execute the @ statement before

the triggering process executes the trigger operator, ->. If the trigger executes first, then the waiting process
remains blocked.

Copyright 2004 Accellera. All rights reserved. 171

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

13.5.4 Persistent trigger: triggered property

SystemVerilog can distinguish the event trigger itself, which is instantaneous, from the event’s triggered state,
which persists throughout the time-step (i.e., until simulation time advances). The triggered event property
allows users to examine this state.

The triggered property isinvoked using a method-like syntax:
hierarchical event identifier.triggered

The triggered event property evaluates to true if the given event has been triggered in the current time-step
and false otherwise. If event _identifier iSnull, then the triggered event property evaluatesto false.

The triggered event property is most useful when used in the context of await construct:
wait (hierarchical event identifier.triggered)

Using this mechanism, an event trigger shall unblock the waiting process whether the wait executes before or
at the same simulation time as the trigger operation. The triggered event property, thus, helps eliminate a
common race condition that occurs when both the trigger and thewai t happen at the sametime. A process that
blocks waiting for an event might or might not unblock, depending on the execution order of the waiting and
triggering processes. However, a process that waits on the triggered state always unblocks, regardless of the
order of execution of the wait and trigger operations.

Example:
event done, blast; // declare two new events
event done too = done; // declare done too as alias to done

task trigger(event ev);

-> ev;
endtask
fork
@ done_too; // wait for done through done too
#1 trigger(done) ; // trigger done through task trigger
join
fork
-> blast;
wait (blast.triggered);
join

The first fork in the example shows how two event identifiers, done and done_too, refer to the same synchro-
nization object, and also how an event can be passed to a generic task that triggers the event. In the example,
one process waits for the event viadone too, while the actual triggering is done viathe trigger task that is
passed done as an argument.

In the second fork, one process can trigger the event blast before the other process (if the processes in the
fork...join executein source order) has a chance to execute, and wait for the event. Nonethel ess, the second
process unblocks and the fork terminates. This is because the process waits for the event’s triggered state,
which remainsin its triggered state for the duration of the time-step.

13.6 Event sequencing: wait_order()

Thewait order construct suspends the calling process until all of the specified events are triggered in the

172 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

given order (left to right) or any of the un-triggered events are triggered out of order and thus causes the oper-
ation to fail.

The syntax for thewait order construct is:

wait_statement ::= // from Annex A.6.5

| wait_order (hierarchical _identifier [, hierarchical_identifier]) action_block
action_block ::=
statement _or_null
| [statement] else statement

Syntax 13-2—wait_order event sequencing syntax (excerpt from Annex A)
For wait_ order to succeed, at any point in the sequence, the subsequent events—which must all be un-trig-
gered at this point, or the sequence would have already failed—must be triggered in the prescribed order. Pre-
ceding events are not limited to occur only once. That is, once an event occursin the prescribed order, it can be
triggered again without causing the construct to fail.
Only thefirst event in the list can wait for the persistent t riggered property.
The action taken when the construct fails depends on whether or not the optional phrase else statement (the
fail statement) is specified. If it is specified, then the given statement is executed upon failure of the construct.
If the fail statement is not specified, afailure generates a run-time error.
For example:

wait order(a, b, ¢);

suspends the current process until events a, b, and c trigger intheordera -> b -> c. If the eventstrigger out
of order, arun-time error is generated.

Example:
wait order(a, b, c) else $display("Error: events out of order");

In this example, the fail statement specifies that upon failure of the construct, a user message be displayed, but
without an error being generated.

Example:

bit success;
wait order(a, b, ¢) success = 1; else success = 0;

In this example, the completion statusis stored in the variabl e success, without an error being generated.

13.7 Event variables
An event is a unique data type with several important properties. Unlike Verilog, SystemVerilog events can be
assigned to one another. When one event is assigned to another the synchronization queue of the source event

is shared by both the source and the destination event. In this sense, events act as full fledged variables and not
merely as labels.

13.7.1 Merging events

When one event variable is assigned to another, the two become merged. Thus, executing - > on either event

Copyright 2004 Accellera. All rights reserved. 173

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

variable affects processes waiting on either event variable.
For example:

event a, b, c;

a = b;

-> c;

-> a; // also triggers b

-> b; // also triggers a

a c;

b = a;

-> a; // also triggers b and c
-> b; // also triggers a and c
-> C; // also triggers a and b

When events are merged, the assignment only affects the execution of subsequent event control or wait opera-
tions. If a process is blocked waiting for event1 when another event is assigned to event1, the currently
waiting process shall never unblock. For example:

fork
Tl: while(l) @ E2;
T2: while(l) @ E1;

T3: begin
E2 = E1;
while (1) -> E2;
end
join

This example forks off three concurrent processes. Each process starts at the same time. Thus, at the sametime
that process T1 and T2 are blocked, process T3 assigns event 1 to 2. This means that process T1 shall never
unblock, because the event £2 is now E1. To unblock both threads T1 and T2, the merger of 2 and E1 must
take place before the fork.

13.7.2 Reclaiming events

When an event variable is assigned the special null value, the association between the event variable and the
underlying synchronization queue is broken. When no event variable is associated with an underlying synchro-
nization queue, the resources of the queue itself become available for re-use.

Triggering a null event shall have no effect. The outcome of waiting on a null event is undefined, and
implementations can issue a run-time warning.

For example:

event E1 = null;

@ E1; // undefined: might block forever or not at all
wait(El.triggered); // undefined
-> E1; // no effect

13.7.3 Events comparison

Event variables can be compared against other event variables or the special value null. Only the following
operators are allowed for comparing event variables:

— Equality (==) with another event or with nul1.
— Inequality (! =) with another event or with nul1.

— Case equality (===) with another event or with nul1 (same semantics as ==).

174 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

— Caseinequality (1==) with another event or with nul1 (same semanticsas ! =).

— Test for aboolean value that shall be 0 if the event isnul1 and 1 otherwise.
Example:

event E1, E2;
if (E1) // same as if (E1 != null)
El = E2;
if (E1 == E2)
Sdisplay("E1l and E2 are the same event");

Copyright 2004 Accellera. All rights reserved. 175

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Section 14
Scheduling Semantics

14.1 Execution of a hardware model and its verification environment

The balance of the sections of this standard describes the behavior of each of the elements of the language.
This section gives an overview of the interactions between these elements, especially with respect to the sched-
uling and execution of events. Although SystemVerilog is not limited to simulation, the semantics of the lan-
guage are defined for event directed ssimulation, and other uses of the hardware description language are
abstracted from this base definition.

14.2 Event simulation

The SystemVerilog language is defined in terms of a discrete event execution model. The discrete event simu-
lation is described in more detail in this section to provide a context to describe the meaning and valid interpre-
tation of SystemVerilog constructs. These resulting definitions provide the standard SystemVerilog reference
algorithm for simulation, which all compliant simulators shall implement. Note that there is a great deal of
choice in the definitions that follow, and differences in some details of execution are to be expected between
different simulators. In addition, SystemVerilog simulators are free to use different algorithms than those
described in this section, provided the user-visible effect is consistent with the reference algorithm.

A SystemVerilog description consists of connected threads of execution or processes. Processes are objects
that can be evaluated, that can have state, and that can respond to changes on their inputs to produce outputs.
Processes are concurrently scheduled elements, such as initial blocks. Example of processes include, but
are not limited to, primitives, initial, always, always comb, always latch, and always £f proce-
dural blocks, continuous assignments, asynchronous tasks, and procedural assignment statements.

Every change in state of a net or variable in the system description being simulated is considered an update
event.

Processes are sensitive to update events. When an update event is executed, all the processes that are sensitive
to that event are considered for evaluation in an arbitrary order. The evaluation of a process is also an event,
known as an evaluation event.

Evaluation events also include PLI callbacks, which are points in the execution model where user-defined
external routines can be called from the simulation kernel.

In addition to events, another key aspect of asimulator istime. The term simulation time is used to refer to the
time value maintained by the simulator to model the actual time it would take for the system description being
simulated. The term time is used interchangeably with simulation time in this section.

To fully support clear and predictable interactions, a single time slot is divided into multiple regions where
events can be scheduled that provide for an ordering of particular types of execution. This alows properties
and checkers to sample data when the design under test isin a stable state. Property expressions can be safely
evaluated, and testbenches can react to both properties and checkers with zero delay, all in a predictable man-
ner. This same mechanism aso allows for non-zero delays in the design, clock propagation, and/or stimulus
and response code to be mixed freely and consistently with cycle accurate descriptions.

14.3 The stratified event scheduler

A compliant SystemVerilog simulator must maintain some form of data structure that alows events to be
dynamically scheduled, executed and removed as the simulator advances through time. The data structure is
normally implemented as atime ordered set of linked lists, which are divided and subdivided in awell defined

manner.

The first division is by time. Every event has one and only one simulation execution time, which at any given

176 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

point during simulation can be the current time or some future time. All scheduled events at a specific time
define a time dot. Simulation proceeds by executing and removing all events in the current simulation time
slot before moving on to the next non-empty time dot, in time order. This procedure guarantees that the simu-
lator never goes backwardsin time.

A time slot is divided into a set of ordered regions:
1) Preponed

2) Pre-active
3) Active

4) Inactive

5) PreNBA

6) NBA

7) Post-NBA
8) Observed

9) Post-observed
10) Reactive

11) Postponed

The purpose of dividing a time slot into these ordered regions is to provide predictable interactions between
the design and testbench code.

Except for the Observed and Reactive regions and the Post-observed PLI region, these regions essentially
encompass the Verilog 1364-2001 standard reference model for simulation, with exactly the same level of
determinism. This means that legacy Verilog code shall continue to run correctly without modification within
the new mechanism. The Postponed region is where the monitoring of signals, and other similar events, takes
place. No new value changes are allowed to happen in the time slot once the Postponed region is reached.

The Observed and Reactive regions are new in the SystemVerilog 3.1 standard, and events are only scheduled
into these new regions from new language constructs.

The Observed region is for the evaluation of the property expressions when they are triggered. A criterion for
this determinism is that the property evaluations must only occur oncein any clock triggering time slot. During
the property evaluation, pass/fail code shall be scheduled in the Reactive region of the current time dlot.

The sampling time of sampled data for property expressions is controlled in the clocking block. The new
#1step sampling delay provides the ability to sample data immediately before entering the current time slot,
and is a preferred construct over other equivalent constructs because it allows the 1step time delay to be
parameterized. This #1step construct is a conceptual mechanism that provides a method for defining when
sampling takes place, and does not require that an event be created in this previous time slot. Conceptually this
#1step sampling isidentical to taking the data samplesin the Preponed region of the current time slot.

Code specified in the program block, and pass/fail code from property expressions, are scheduled in the Reac-
tive region.

The Pre-active, Pre-NBA, and Post-NBA are new in the SystemVerilog 3.1 standard but support existing PLI
callbacks. The Post-observed regionis new in the SystemVerilog 3.1 standard and has been added for PLI sup-
port.

The Pre-active region is specifically for aPLI callback control point that allows for user code to read and write
values and create events before eventsin the Active region are evaluated (see Section 14.4).

Copyright 2004 Accellera. All rights reserved. 177

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

The Pre-NBA region is specifically for aPLI callback control point that allows for user code to read and write
values and create events before the eventsin the NBA region are evaluated (see Section 14.4).

The Post-NBA region is specifically for aPLI callback control point that allows for user code to read and write
values and create events after the eventsin the NBA region are evaluated (see Section 14.4).

The Post-observed region is specifically for a PLI callback control point that allows for user code to read val-
ues after properties are evaluated (in Observed or earlier region).

The flow of execution of the event regionsis specified in Figure 14-1.

¢—— timeslot — P

from previous
time slot

» preponed

A
@ctive
A

]

<
v
active

4

inactive

(o

Legend:

region
post-NBA
PLI Region
\ 4

observed

post-observed

A 4

reactive [—»
to next
A

y time slot

postponed >

Figure 14-1 — The SystemVerilog flow of time slots and event regions

TheActive, Inactive, Pre-NBA, NBA, Post-NBA, Observed, Post-observed and Reactive regions are known as
the iterative regions.

The Preponed region is specifically for a PLI callback control point that allows for user code to access data at
the current time slot before any net or variable has changed state.

178 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

The Active region holds current events being evaluated and can be processed in any order.
The Inactive region holds the events to be evaluated after all the active events are processed.

An explicit #0 delay requires that the process be suspended and an event scheduled into the Inactive region of
the current time slot so that the process can be resumed in the next inactive to active iteration.

A nonblocking assignment creates an event in the NBA region, scheduled for current or a later simulation
time.

The Postponed region is specifically for aPLI callback control point that allows for user code to be suspended
until after all the Active, Inactive and NBA regions have completed. Within this region, it isillegal to write
values to any net or variable, or to schedule an event in any previous region within the current time slot.

14.3.1 The SystemVerilog simulation reference algorithm
execute simulation {

T = 0;

initialize the values of all nets and variables;

schedule all initialization events into time 0 slot;

while (some time slot is non-empty) {
move to the next future non-empty time slot and set T;
execute time slot (T);

}

execute time slot
execute region (preponed) ;
while (some iterative region is non-empty) {
execute region (active);
scan iterative regions in order {
if (region is non-empty) {
move events in region to the active region;
break from scan loop;

}
}

execute region (postponed) ;

}

execute region {
while (region is non-empty) {
E = any event from region;
remove E from the region;
if (E is an update event) {
update the modified object;
evaluate processes sensitive to the object and possibly schedule
further events for execution;
} else { /* E is an evaluation event */
evaluate the process associated with the event and possibly
schedule further events for execution;

}

The lIterative regions and their order are: Active, Inactive, Pre-NBA, NBA, Post-NBA, Observed, Post-
observed and Reactive.

Copyright 2004 Accellera. All rights reserved. 179

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

14.4 The PLI callback control points

There are two kinds of PLI callbacks, those that are executed immediately when some specific activity occurs,
and those that are explicitly registered as a one-shot evaluation event.

It is possible to explicitly schedule a PLI callback event in any region. Thus, an explicit PLI callback registra-
tionisidentified by atuple: (time, region).

The following list provides the mapping from the various current PLI callbacks

Table 14-3: PLI Callbacks

Callback I dentification
tf synchronize (time, Pre-NBA)
tf isynchronize (time, Pre-NBA)
tf rosynchronize (time, Postponed)
tf irosynchronize (time, Postponed)
cbReadWriteSynch (time, Post-NBA)
cbAtStartOfSimTime (time, Pre-active)
cbReadOnlySynch (time, Postponed)
cbNBASynch (time, Pre-NBA)
cbAtEndOfSimTime (time, Postponed)
cbNextSimTime (time, Pre-active)
cbAfterDelay (time, Pre-active)

180 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 15
Clocking Blocks

15.1 Introduction (informative)

In Verilog, the communication between blocks is specified using module ports. SystemVerilog adds the inter-
face, a key construct that encapsulates the communication between blocks, thereby enabling users to easily
change the level of abstraction at which the inter-module communication is to be modeled.

An interface can specify the signals or nets through which a testbench communicates with a device under test.
However, an interface does not explicitly specify any timing disciplines, synchronization requirements, or
clocking paradigms.

SystemVerilog adds the clocking block that identifies clock signals, and captures the timing and synchroni-
zation requirements of the blocks being modeled. A clocking block assembles signals that are synchronousto a
particular clock, and makestheir timing explicit. The clocking block isakey element in a cycle-based method-
ology, which enables users to write testbenches at a higher level of abstraction. Rather than focusing on signals
and transitions in time, the test can be defined in terms of cycles and transactions. Depending on the environ-
ment, a testbench can contain one or more clocking blocks, each containing its own clock plus an arbitrary
number of signals.

The clocking block separates the timing and synchronization details from the structural, functional, and proce-
dural elements of atestbench. Thus, the timing for sampling and driving clocking block signalsisimplicit and
relative to the clocking-block’s clock. This enables a set of key operations to be written very succinctly, with-
out explicitly using clocks or specifying timing. These operations are;

— Synchronous events
— Input sampling

— Synchronous drives

15.2 Clocking block declaration

The syntax for the clocking block is:

Copyright 2004 Accellera. All rights reserved. 181

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

clocking_declaration ::= I/ from Annex A.6.11
[default] clocking [clocking_identifier] clocking_event ;
{ clocking_item}
endclocking [: clocking_identifier]
clocking_event ::=
@ identifier
| @ (event_expression)
clocking_item ;=
default default_skew ;
| clocking_direction list_of _clocking_decl_assign ;
| { attribute_instance} concurrent_assertion_item_declaration
default_skew ::=
input clocking_skew
| output clocking_skew
| input clocking_skew output clocking_skew
clocking_direction ::=
input [clocking_skew]
| output [clocking_skew]
| input [clocking_skew] output [clocking_skew]
| inout
list_of clocking_decl_assign ::= clocking_decl_assign{ , clocking_decl_assign}
clocking_decl_assign ::= signal_identifier [= hierarchical_identifier]
clocking_skew ::=
edge identifier [delay_control]

| delay_control
edge identifier ::= posedge | negedge /I from Annex A.7.4
delay control ::= [/ from Annex A.6.5
delay value

| # (mintypmax_expression)

Syntax 15-1—Clocking block syntax (excerpt from Annex A)

The delay_control must be either a time literal or a constant expression that evaluates to a positive integer
value.

The clocking_identifier specifies the name of the clocking block being declared.

The signal_identfier identifies asignal in the scope enclosing the clocking block declaration, and declares the
name of a signal in the clocking block. Unless a hierarchical_expression is used, both the signal and the
clocking_item names shall be the same.

The clocking_event designates a particular event to act as the clock for the clocking block. Typically, this
expression is either the posedge or negedge 0f aclocking signal. The timing of all the other signals specified
in a given clocking block is governed by the clocking event. All input or inout signals specified in the
clocking block are sampled when the corresponding clock event occurs. Likewise, all output Or inout Sig-
nalsin the clocking block are driven when the corresponding clock event occurs. Bidirectional signals (inout)
are sampled as well as driven.

The clocking_skew determines how many time units away from the clock event a signal is to be sampled or
driven. Input skews are implicitly negative, that is, they aways refer to atime before the clock, whereas output
skews always refer to a time after the clock (see Section 15.3). When the clocking event specifies a simple
edge, instead of a number, the skew can be specified as the specific edge of the signal. A single skew can be

182 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

specified for the entire block by using adefault clocking item.

clocking ckl @ (posedge clk) ;
default input #lstep output negedge; // legal
// outputs driven on the negedge clk
input ... ;
output ... ;
endclocking

clocking ck2 @(clk); // no edge specified!
default input #lstep output negedge; // legal
input ... ;
output ... ;

endclocking

The hierarchical_identifier specifies that, instead of alocal port, the signal to be associated with the clocking
block is specified by its hierarchical name (cross-module reference).

Example:

clocking bus @ (posedge clockl) ;
default input #10ns output #2ns;
input data, ready, enable = top.meml.enable;
output negedge ack;
input #lstep addr;
endclocking

In the above example, the first line declares a clocking block called bus that is to be clocked on the positive
edge of the signal c1ock1. The second line specifies that by default al signalsin the clocking block shall use
ailons input skew and a2ns output skew. The next line adds three input signals to the clocking block: data,
ready, and enable; the last signal refers to the hierarchical signa top.mem1 .enable. The fourth line adds
the signal ack to the clocking block, and overrides the default output skew so that ack is driven on the nega-
tive edge of the clock. The last line adds the signal addr and overrides the default input skew so that addr is
sampled one step before the positive edge of the clock.

Unless otherwise specified, the default input skew is 1step and the default output skew is 0. A stepisa
special time unit whose value is defined in Section 18.10. A 1step input skew allows input signals to sample
their steady-state values in the time step immediately before the clock event (i.e., in the preceding Postponed
region). Unlike other time units, which represent physical units, a step cannot be used to set or modify either
the precision or the timeunit.

15.3 Input and output skews
Input (or inout) signals are sampled at the designated clock event. If an input skew is specified then the signal
is sampled at skew time units before the clock event. Similarly, output (or inout) signals are driven skew simu-

lation time units after the corresponding clock event. Figure 15-1 shows the basic sample/drive timing for a
positive edge clock.

Copyright 2004 Accellera. All rights reserved. 183

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001
signal sampled here signal driven here
A . A
| | |
| | |
| T
| |
clock | :
]
TR
input skew \> output skew

Figure 15-1 — Sample and drive times including skew
with respect to the positive edge of the clock.

A skew must be a constant expression, and can be specified as a parameter. If the skew does not specify atime
unit, the current time unit is used. If anumber is used, the skew isinterpreted using the timescale of the current
scope.

clocking dram @(clk) ;
input #1ps address;
input #5 output #6 data;
endclocking

An input skew of 1step indicates that the signal is to be sampled at the end of the previoustime step. That is,
the value sampled is aways the signal’s last value immediately before the corresponding clock edge.

Inputs with explicit #0 skew are sampled at the same time as their corresponding clocking event, but to avoid
races, they are sampled in the Observed region. Likewise, clocking block outputs with no skew (or explicit #0
skew) are driven at the same time as their specified clocking event, as nonblocking assignments (in the NBA

region).

Skews are declarative constructs, thus, they are semantically very different from the syntactically similar pro-
cedural delay statement. In particular, an explicit #0 skew, does not suspend any process nor does it execute or
sample values in the Inactive region.

15.4 Hierarchical expressions

Any signal in a clocking block can be associated with an arbitrary hierarchical expression. As described in
Section 15.2, ahierarchical expression isintroduced by appending an equal sign (=) followed by the hierarchi-
cal expression:

clocking cdl @(posedge phil) ;
input #lstep state = top.cpu.state;
endclocking

However, hierarchical expressions are not limited to simple names or signalsin other scopes. They can be used
to declare slices and concatenations (or combinations thereof) of signalsin other scopes or in the current scope.

clocking mem @ (clock) ;

input instruction = { opcode, regA, regB[3:1] };
endclocking

184 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

15.5 Signals in multiple clocking blocks

The same signals—clock, inputs, inouts, or outputs—can appear in more than one clocking block. Clocking
blocks that use the same clock (or clocking expression) shall share the same synchronization event, in the same
manner as several latches can be controlled by the same clock. Input semantics are described in Section 15.12,
and output semantics are described in Section 15.14.

15.6 Clocking block scope and lifetime

A clocking block isboth adeclaration and an instance of that declaration. A separate instantiation step is not
necessary. Instead, one copy is created for each instance of the block containing the declaration (like an always
block). Once declared, the clocking signals are available via the clocking block name and the dot (.) operator:

dom.sig // signal sig in clocking dom

Clocking blocks cannot be nested. They cannot be declared inside functions, tasks, packages, or outside all
declarations in a compilation unit. Clocking blocks can only be declared inside a module, interface or program
(see Section 16).

Clocking blocks have static lifetime and scope local to their enclosing module, interface or program.

15.7 Multiple clocking blocks example

In this example, asimple test program includes two clocking blocks. The program construct used in this exam-
pleisdiscussed in Section 16.

program test(input phil, input [15:0] data, output logic write,
input phi2, inout [8:1] cmd, input enable
)i
reg [8:1] cmd reg;

clocking cdl @ (posedge phil) ;
input data;
output write;
input state = top.cpu.state;
endclocking

clocking cd2 @ (posedge phi2) ;
input #2 output #4ps cmd;
input enable;

endclocking

initial begin
// program begins here

// user can access cdl.data , cd2.cmd , etc..
end
assign cmd = enable ? cmd reg: 'x;
endprogram

The test program can be instantiated and connected to a device under test (cpu and mem).
module top;
logic phil, phi2;

wire [8:1] cmd; // cannot be logic (two bidirectional drivers)
logic [15:0] data;

Copyright 2004 Accellera. All rights reserved. 185

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

test main(phil, data, write, phi2, cmd, enable);
cpu cpul(phil, data, write);
mem meml (phi2, cmd, enable);

endmodule

15.8 Interfaces and clocking blocks

A clocking encapsulates a set of signals that share a common clock, therefore, specifying a clocking block
using a SystemVerilog interface can significantly reduce the amount of code needed to connect the test-
bench. Furthermore, since the signal directions in the clocking block within the testbench are with respect to
the testbench, and not the design under test, amodport declaration can appropriately describe either direction.
A testbench program can be contained within a program and its ports can be interfaces that correspond to the
signals declared in each clocking block. The interface’s wires shall have the same direction as specified in the
clocking block when viewed from the testbench side (i.e., modport test), and reversed when viewed from
the device under test (i.e., modport dut).

For example, the previous example could be re-written using interfaces as follows:

interface bus A (input clk);
logic [15:0] data;
logic write;
modport test (input data, output write);
modport dut (output data, input write);
endinterface

interface bus B (input clk);
logic [8:1] cmd;
logic enable;
modport test (input enable);
modport dut (output enable) ;
endinterface

program test(bus A.test a, bus B.test b);

clocking cdl @(posedge a.clk) ;
input a.data;
output a.write;
inout state = top.cpu.state;
endclocking

clocking cd2 @(posedge b.clk) ;
input #2 output #4ps b.cmd;
input b.enable;

endclocking

initial begin
// program begins here
// user can access cdl.a.data , cd2.b.cmd , etc..
end
endprogram

The test module can be instantiated and connected as before:

module top;
logic phil, phi2;

186 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

bus A a(phil);
bus B b(phi2);

test main(a, b);

cpu cpul(a);

mem meml(b);
endmodule

Alternatively, in the program test above, the clocking block can be written using both interfaces and hierarchi-
cal expressions as:

clocking cdl @(posedge a.clk);
input data = a.data;

output write = a.write;
inout state = top.cpu.state;
endclocking

clocking cd2 @(posedge b.clk);
input #2 output #4ps cmd = b.cmd;
input enable = b.enable;
endclocking
This would allow using the shorter names (cd1.data, cd2.cmd, ...) instead of the longer interface syntax
(cd1.a.data, cd2.b.cmd,...)

15.9 Clocking block events

The clocking event of a clocking block is available directly by using the clocking block name, regardless of the
actual clocking event used to declare the clocking block.

For example.
clocking dram @ (posedge phil) ;
inout data;
output negedge #1 address;
endclocking
The clocking event of the dram clocking block can be used to wait for that particular event:

@(dram) ;

The above statement is equivalent to @ (posedge phil).

15.10 Cycle delay: ##

The ## operator can be used to delay execution by a specified number of clocking events, or clock cycles.

The syntax for the cycle delay statement is:

Copyright 2004 Accellera. All rights reserved. 187

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

procedura _timing_control _statement ::= // from Annex A.6.5
procedural_timing_control statement_or_null

procedura_timing_control ::=

| cycle delay
cycle delay ::= I/ from Annex A.6.11
integral_number
| ## identifier
| ## (expression)

Syntax 15-2—Cycle delay syntax (excerpt from Annex A)
The expression can be any SystemVerilog expression that evaluates to a positive integer value.

What congtitutes acycle is determined by the default clocking in effect (see Section 15.11). If no default clock-
ing has been specified for the current module, interface, or program then the compiler shall issue an error.

Example:
5; // wait 5 cycles (clocking events) using the default clocking
(3 + 1); // wait j+1 cycles (clocking events) using the default clocking

15.11 Default clocking

One clocking can be specified as the default for all cycle delay operations within a given module, inter-
face, O program.

The syntax for the default cycle specification statement is:

module_or_generate item_declaration ::= [/l from Annex A.1.5

| default clocking clocking_identifier ;

clocking_declaration ::= I/ from Annex A.6.11
[default] clocking [clocking_identifier] clocking_event ;
{ clocking_item}
endclocking [: clocking_identifier]

Syntax 15-3—Default clocking syntax (excerpt from Annex A)
The clocking_identifier must be the name of a clocking block.

Only one default clocking can be specified in a program, module, or interface. Specifying a default clocking
more than once in the same program or module shall result in a compiler error.

A default clocking is valid only within the scope containing the default clocking specification. This scope
includes the module, interface, or program that contains the declaration as well as any nested modules or inter-
faces. It does not include instantiated modules or interfaces.

Example 1. Declaring a clocking as the default:

program test(input bit clk, input reg [15:0] data);
default clocking bus @ (posedge clk) ;

188 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

inout data;
endclocking

initial begin

5;
if (bus.data == 10)
1;
else
end
endprogram

Example 2. Assigning an existing clocking to be the default:
module processor ...
clocking busA @ (posedge clkl); ... endclocking
clocking busB @ (negedge clk2); ... endclocking
module cpu(interface y);
default clocking busA ;
initial begin
5; // use busA => (posedge clkl)

end
endmodule
endmodule

15.12 Input sampling

All clocking block inputs (input or inout) are sampled at the corresponding clocking event. If the input skew is
not an explicit #0, then the value sampled corresponds to the signal value at the Postponed region of the time
step skew time-units prior to the clocking event (see Figure 15-1 in Section 15.3). If the input skew is an
explicit #0, then the value sampled corresponds to the signal value in the Observed region.

Sampl es happen immediately (the calling process does not block). When asignal appearsin an expression, itis
replaced by the signal’s sampled value, that is, the value that was sampled at the last sampling point.

When the same signal is an input to multiple clocking blocks, the semantics are straightforward; each clocking
block samples the corresponding signal with its own clocking event.
15.13 Synchronous events

Explicit synchronization is done viathe event control operator, @, which allows a process to wait for a particu-
lar signal value change, or a clocking event (see Section 15.9).

The syntax for the synchronization operator is given in Section 8.10.

The expression used with the event control can denote clocking block input (input Or inout), or a slice
thereof. Slices can include dynamic indices, which are evaluated once, when the @ expression executes.

These are some example synchronization statements:

— Wait for the next change of signal ack_1 of clocking block ram bus

@(ram bus.ack 1);

— Wiait for the next clocking event in clocking block ram bus

Copyright 2004 Accellera. All rights reserved. 189

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

@ (ram_bus) ;

— Wait for the positive edge of the signhal ram_bus.enable

@ (posedge ram bus.enable) ;

— Wait for the falling edge of the specified 1-bit slice dom.sign[a]. Note that the index a is evaluated at
runtime.

@ (negedge dom.signl[a]) ;

— Wait for either the next positive edge of dom.sig1 or the next change of dom.sig2, whichever happens
first.

@ (posedge dom.sigl or dom.sig2);

— Wait for the either the negative edge of dom.sig1 or the positive edge of dom. sig2, whichever happens
first.

@ (negedge dom.sigl or posedge dom.sig2) ;
The values used by the synchronization event control are the synchronous values, that is, the values sampled at
the corresponding clocking event.
15.14 Synchronous drives
Clocking block outputs (output oOr inout) are used to drive values onto their corresponding signals, but at a
specified time. That is, the corresponding signal changes value at the indicated clocking event as modified by
the output skew.

The syntax to specify a synchronous driveis similar to an assignment:

statement ::= [block_identifier :] { attribute_instance} statement_item [/l from Annex A.6.4
statement_item ::=

| clocking_drive;

clocking_drive ::= // from Annex A.6.11
clockvar_expression <=[cycle_delay] expression
| cycle delay clockvar_expression <= expression
cycle delay ::= ## expression
clockvar ::= hierarchical _identifier
clockvar_expression ::= clockvar select

Syntax 15-4—Synchronous drive syntax (excerpt from Annex A)

The clockvar_expression is either a bit-select, dice, or the entire clocking block output whose corresponding
signal isto be driven (concatenation is not alowed):

dom.sig // entire clockvar

190 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
dom.sig[2] // bit-select
dom.sig[8:2] // slice

The expression (in the clocking_drive production) can be any valid expression that is assignment compatible
with the type of the corresponding signal.

The event_count refers to the expression after the ## in the cycle_delay production and is an integral expres-
sion that optionally specifies the number of clocking events (i.e. cycles) that must pass before the statement
executes. Specifying anon-zero event_count blocks the current process until the specified number of clock-
ing events have elapsed, otherwise the statement executes at the current time. The event count USeS syntax
similar to the cycle-delay operator (see Section 15.10), however, the synchronous drive uses the clocking
block of the signal being driven and not the default clocking.

The second form of the synchronous drive uses the intra-assignment syntax. An intra-assignment
event count specification also delays execution of the assignment. In this case the process does not block
and the right-hand side expression is evaluated when the statement executes.

Examples:

bus.data[3:0] <= 4'h5; // drive data in the NBA region of the current cycle

##1 bus.data <= 8'hz; // wait 1 (bus) cycle and then drive data
##2; bus.data <= 2; // wait 2 default clocking cycles, then drive data
bus.data <= ##2 r; // remember the value of r and then drive

// data 2 (bus) cycles later

Regardless of when the drive statement executes (due to event_count delays), the driven value is assigned to
the corresponding signal only at the time specified by the output skew.

15.14.1 Drives and nonblocking assignments
Synchronous signal drives are processed as nonblocking assignments.
A key feature of inout clocking block variables and synchronous drives is that a drive does not change the

clocking block input. Thisis because reading the input always yields the last sampled value, and not the driven
value.

15.14.2 Drive value resolution
When more than one synchronous drive is applied to the same clocking block output (or inout) at the same
simulation time, the driven values are checked for conflicts. When conflicting drives are detected a runtime
error isissued, and each conflicting bit is drivento X (or O for a 2-state port).
For example:
clocking pe @ (posedge clk) ;
output nibble; // four bit output

endclocking

pe.nibble <= 4'b0101;
pe.nibble <= 4'b0011;

Thedriven value of nibble iS4’ boxx1, regardless of whether nibble iSareg Or awire.

When the same variable is an output from multiple clocking blocks, the last drive determines the value of the
variable. This alows a single module to model multi-rate devices, such as a DDR memory, using a different

Copyright 2004 Accellera. All rights reserved. 191

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

clocking block to model each active edge. For example:
reg j;

clocking pe @ (posedge clk) ;
output j;
endclocking

clocking ne @(negedge clk) ;
output j;
endclocking

The variable j is an output to two clocking blocks using different clocking events (posedge VS. negedge).
When driven, the variable 5 shall take on the value most recently assigned by either clocking block.

Clocking block outputs driving a net (i.e. through different ports) cause the net to be driven to its resolved sig-
nal value. When a clocking block output corresponds to awire, adriver for that wireis created that is updated
as if by a continuous assignment from a register inside the clocking block that is updated as a nonblocking
assighment.

192 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 16
Program Block

16.1 Introduction (informative)

The module is the basic building block in Verilog. Modules can contain hierarchies of other modules, wires,
task and function declarations, and procedural statements within always and initial blocks. This construct
works extremely well for the description of hardware. However, for the testbench, the emphasis is not in the
hardware-level details such as wires, structura hierarchy, and interconnects, but in modeling the complete
environment in which a design is verified. A lot of effort is spent getting the environment properly initialized
and synchronized, avoiding races between the design and the testbench, automating the generation of input
stimuli, and reusing existing models and other infrastructure.

The program block serves three basic purposes:
1) It provides an entry point to the execution of testbenches.
2) It creates a scope that encapsulates program-wide data.

3) It provides a syntactic context that specifies scheduling in the Reactive region.

The program construct serves as a clear separator between design and testbench, and, more importantly, it
specifies specialized execution semantics in the Reactive region for al elements declared within the program.
Together with clocking blocks, the program construct provides for race-free interaction between the design and
the testbench, and enables cycle and transaction level abstractions.

The abstraction and modeling constructs of SystemVerilog simplify the creation and maintenance of test-
benches. The ability to instantiate and individually connect each program instance enables their use as general -
ized models.

16.2 The program construct

A typical program contains type and data declarations, subroutines, connections to the design, and one or more
procedural code streams. The connection between design and testbench uses the same interconnect mechanism
as used by SystemVerilog to specify port connections, including interfaces. The syntax for the program block
is:

Copyright 2004 Accellera. All rights reserved. 193

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

program_nonansi_header ::= [/l from Annex A.1.3
{ attribute_instance} program [lifetime] program_identifier
[parameter_port_list] list_of ports;
program_ansi_header ::=
{attribute_instance} program [lifetime] program _identifier
[parameter_port_list] [list_of_port_declarations] ;
program_declaration ::=
program_nonansi_header [timeunits_declaration] { program _item}
endprogram [: program_identifier |
| program_ansi_header [timeunits_declaration] { non_port_program_item }
endprogram [: program_identifier |
| { attribute_instance} program program _identifier (.*) ;
[timeunits_declaration] { program_item}
endprogram [: program_identifier]
| extern program_nonansi_header
| extern program_ansi_header
program_item ::= [/l from Annex A.1.7
port_declaration ;
| non_port_program_item
non_port_program_item ::=
{ attribute_instance} continuous_assign
| { attribute_instance} module_or_generate item_declaration
| { attribute_instance} specparam_declaration
| { attribute_instance} initial_construct
| { attribute_instance} concurrent_assertion_item

| { attribute_instance} ti meunits_declaration’®

lifetime ::= static | automatic // from Annex A.2.1.3

Syntax 16-1—Program declaration syntax (excerpt from Annex A)
For example:

program test (input clk, input [16:1] addr, inout [7:0] data);
initial ...
endprogram

or

program test (interface device ifc);
initial ...
endprogram

A more complete exampleisincluded in Sections 15.7 and 15.8.

Although the program construct is new to SystemVerilog, its inclusion is a hatural extension. The program
construct can be considered a leaf module with special execution semantics. Once declared, a program block
can be instantiated in the required hierarchical location (typically at the top level) and its ports can be con-
nected in the same manner as any other module.

Program blocks can be nested within modules or interfaces. This allows multiple cooperating programs to
share variables local to the scope. Nested programs with no ports or top-level programs that are not explicitly
instantiated are implicitly instantiated once. Implicitly instantiated programs have the same instance and decla-
ration name. For example:

194 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

module test(...)
int shared; // variable shared by programs pl and pl

program pl;

endé¥$gram

program p2;

endﬁésgram // pl and p2 are implicitly instantiated once in module test
endmodule

A program block can contain one or more initial blocks. It cannot contain always blocks, UDPs, modules,
interfaces, or other programs.

Type and data declarations within the program are local to the program scope and have static lifetime. Program
variables can only be assigned using blocking assignments. Non-program variables can only be assigned using
nonblocking assignments. Using nonblocking assignments with program variables or blocking assignments
with design (non-program) variables shall be an error. References to program variables from outside any pro-
gram block shall be an error.

16.3 Multiple programs

It isallowed to have any arbitrary number of program definitions or instances. The programs can be fully inde-
pendent (without inter-program communication), or cooperative. The degree of communication can be con-
trolled by choosing to share data using nested blocks, packages, or hierarchical references, or making the data
private by declaring it inside the corresponding program block.

16.4 Eliminating testbench races

There are two major sources of non-determinism in Verilog. Thefirst oneisthat active events are processed in
an arbitrary order. The second one is that statements without time-control constructs in behavioral blocks do
not execute as one event. However, from the testbench perspective, these effects are all unimportant details.
The primary task of atestbench isto generate valid input stimulus for the design under test, and to verify that
the device operates correctly. Furthermore, testbenches that use cycle abstractions are only concerned with the
stable or steady state of the system for both checking the current outputs and for computing stimuli for the next
cycle. Formal tools also work in this fashion.

Statements within a program block that are sensitive to changes (e.g., update events) in design signals
(declared in modules, not program blocks) are scheduled in the Reactive region. Consider a program block that
contains the statement @ (c1k) s1; where c1k isadesign signal in some module. Every transition of signa
c1k will cause the statement s1 to be scheduled into the Reactive region. Likewise, initial blocks within pro-
gram blocks are scheduled in the Reactive region; in contrast, initial blocks in modules are scheduled in the
Active region. In addition, design signals driven from within the program must be assigned using nonblocking
assignments and are updated in the NBA region. Thus, even signals driven with no delay are propagated into
the design as one event. With this behavior, correct cycle semantics can be modeled without races; thereby
making program-based testbenches compatible with clocked assertions and formal tools.

Since the program schedul es events in the Reactive region, the clocking block construct is very useful to auto-
matically sample the steady-state values of previous time steps or clock cycles. Programs that read design val-
ues exclusively through clocking blocks with #0 input skews are insensitive to read-write races. It isimportant
to note that ssimply sampling input signals (or setting non-zero skews on clocking block inputs) does not elimi-
nate the potential for races. Proper input sampling only addresses a single clocking block. With multiple
clocks, the arbitrary order in which overlapping or simultaneous clocks are processed is still a potential source
for races. The program construct addresses this issue by scheduling its execution in the Reactive region, after

Copyright 2004 Accellera. All rights reserved. 195

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

all design events have been processed, including clocks driven by nonblocking assignments.

16.4.1 Zero-skew clocking block races

When a clocking block sets both input and output skewsto #0 (see Section 15.3) then its inputs are sampled
(in the observed region) at the same time as its outputs are driven (in the NBA region). This type of explicit #0
delay processing is a common source of non-determinism that can result in races. Nonetheless, even in this
case, the program minimizes races by means of two mechanisms. First, by constraining program statements to
be scheduled in the Reactive region, after all explicit #0 delay transitions have propagated through the design
and the system has reached a quasi steady state. Second, by requiring design variables or nets to be modified
only via nonblocking assignments. These two mechanisms reduce the likelihood of arace; nonetheless, arace
is still possible when skews are set to explicit #0 .

16.5 Blocking tasks in cycle/event mode

Calling program tasks or functions from within design modules isillegal and shall result in an error. Thisis
because the design must not be aware of the testbench. Programs are allowed to call tasks or functionsin other
programs or within design modules. Functions within design modules can be called from a program, and
reguire no specia handling. However, blocking tasks (atask that does not execute in O simulation time) within
design modules that are called from a program do require explicit synchronization upon return from the task.
That is, when blocking tasks return to the program code, the program block execution is automatically post-
poned until the Reactive region. The copy out of the parameters happens when the task returns.

Calling blocking tasks in design modules from within programs requires careful consideration. Expressions
evaluated by the task before blocking on the first timing control shall use the values after they have been
updated by nonblocking assignments. In contrast, if the task is called from amodul e at the start of the time step
(before nonblocking assignments are processed) then those same expressions shall use the values before they
have been updated by nonblocking assignments.

module ...
task T;
S1l: a = b; // might execute before or after the Observe region
#5;
S2: b <= 1’bl; // always executes before the Observe region
endtask
endmodule

If task T, above, is called from within a module, then the statement s1 can execute immediately when the
Activeregion is processed, before variable b is updated by a nonblocking assignment. If the sasme task is called
from within a program, then the statement s1 shall execute when the Reactive region is processed, after vari-
able b might have been updated by nonblocking assignments. Statement s2 always executes immediately after
the delay expires; it does not wait for the Reactive region even though it was originally called from the pro-
gram block.

16.6 Program control tasks

In addition to the normal simulation control tasks ($stop and $finish), aprogram can use the sexit control
task.

16.6.1 $exit()

Each program can be explicitly exited by calling the sexit system task. When all programs exit (implicitly or
explicitly), the simulation finishes and an implicit call to $finish is made.

The syntax for the $exit systemtask is:

task Sexit () ;

196 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

When all initial blocksin aprogram finish (i.e., they execute their last statement), the program implicitly
calls sexit. Caling sexit causes all processes spawned by the current program to be terminated.

Copyright 2004 Accellera. All rights reserved. 197

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Section 17
Assertions

17.1 Introduction (informative)

SystemVerilog adds features to specify assertions of a system. An assertion specifies a behavior of the system.
Assertions are primarily used to validate the behavior of a design. In addition, assertions can be used to pro-
vide functional coverage and generate input stimulus for validation.

There are two kinds of assertions: concurrent and immediate.

— Immediate assertions follow simulation event semantics for their execution and are executed like a state-
ment in a procedural block. Immediate assertions are primarily intended to be used with simulation.

— Concurrent assertions are based on clock semantics and use sampled values of variables. One of the goals
of SystemVerilog assertions is to provide a common semantic meaning for assertions so that they can be
used to drive various design and verification tools. Many tools, such as formal verification tools, evaluate
circuit descriptions using cycle-based semantics, which typically relies on a clock signal or signalsto drive
the evaluation of the circuit. Any timing or event behavior between clock edges is abstracted away. Con-
current assertions incorporate these clock semantics. While this approach generally simplifies the evalua-
tion of a circuit description, there are a number of scenarios under which this cycle-based evaluation
provides different behavior from the standard event-based evaluation of SystemVerilog.

This section describes both types of assertions.

17.2 Immediate assertions

The immediate assertion statement is atest of an expression performed when the statement is executed in the
procedural code. The expression is hon-temporal and is interpreted the same way as an expression in the con-
dition of a procedural if statement. That is, if the expression evaluates to X, Z or 0, then it is interpreted as
being false and the assertion is said to fail. Otherwise, the expression is interpreted as being true and the asser-
tion issaid to pass.

Theimmediate assert statement isa statement_item and can be specified anywhere a procedural statement is
specified.

procedural_assertion_statement ::= [/l from Annex A.6.10

| immediate assert statement
immediate assert_statement ::=
assert (expression) action_block
action block ::= // from Annex A.6.3

statement _or_null
| [statement] else statement

Syntax 17-1—Immediate assertion syntax (excerpt from Annex A)

The action_block specifies what actions are taken upon success or failure of the assertion. The statement asso-
ciated with the success of the assert statement is the first statement. It is called the pass statement and is exe-
cuted if the expression evaluates to true. The pass statement can, for example, record the number of successes
for acoverage log, but can be omitted altogether. If the pass statement is omitted, then no user-specified action
is taken when the assert expression is true. The statement associated with else is called afail statement and is
executed if the expression evaluatesto false. The else statement can also be omitted. The action block is exe-
cuted immediately after the evaluation of the assert expression.

198 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

The optional statement label (identifier and colon) creates a named block around the assertion statement (or
any other SystemVerilog statement) and can be displayed using the $m format specification.

assert foo : assert(foo) $display("%m passed"); else $display("%m failed");
Note: The assertion control system tasks are described in Section 23.9.

Since the assertion is a statement that something must be true, the failure of an assertion shall have a severity
associated with it. By default, the severity of an assertion failureis error. Other severity levels can be specified
by including one of the following severity system tasksin the fail statement:

— S$fatalisarun-timefatal.
— Serrorisarun-timeerror.
— $warning isarun-timewarning, which can be suppressed in a tool-specific manner.

— $info indicates that the assertion failure carries no specific severity.
The syntax for these system tasks is shown in Section 23.8.

If an assertion fails and no else clause is specified, the tool shall, by default, call serror, unless a tool-spe-
cific option, such as a command-line option, is enabled to suppress the failure.

All of these severity system tasks shall print a tool-specific message indicating the severity of the failure, and
specific information about the specific failure, which shall include the following information:

— Thefile name and line number of the assertion statement.

— Thehierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also include the simulation run-time at which the severity system task is
called.

Each system task can also include additional user-specified information using the same format as the Verilog
Sdisplay.

If more than one of these system tasksisincluded in the else clause, then each shall be executed as specified.

If the severity system task is executed at atime other than when the assertion fails, the actual failure time of the
assertion can be recorded and displayed programmatically. For example:

time t;

always @(posedge clk)

if (state == REQ)
assert (reqgl || reg2)
else begin
t = Stime;
#5 Serror ("assert failed at time %0t",t);
end

If the assertion fails at time 10, the error message shall be printed at time 15, but the user-defined string printed
shall be “assert failed at time 10”.

The display of messages of warning and info types can be controlled by atool-specific option, such as a com-
mand-line option.

Since the fail statement, like the pass statement, is any legal SystemVerilog procedural statement, it can also be
used to signal afailure to another part of the testbench.

assert (myfunc(a,b)) countl = count + 1; else ->eventl;

Copyright 2004 Accellera. All rights reserved. 199

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

assert (y == 0) else flag = 1;

17.3 Concurrent assertions overview

Concurrent assertions describe behavior that spans over time. Unlike immediate assertions, the evaluation
model is based on a clock such that a concurrent assertion is evaluated only at the occurrence of a clock tick.
The values of variables used in the evaluation are the sampled values. This way, a predictable result can be
obtained from the evaluation, regardless of the simulator’s internal mechanism of ordering events and eval uat-
ing events. Thismodel of execution also corresponds to the synthesis model of hardware interpretation from an
RTL description.

The values of variables used in assertions are sampled in the Preponed region of atime slot and the assertions
are evaluated during the Observe region. Thisis explained in Section 14, Scheduling Semantics.

The timing model employed in a concurrent assertion specification is based on clock ticks and uses a general-
ized notion of clock cycles. The definition of aclock is explicitly specified by the user and can vary from one
expression to another.

A clock tick is an atomic moment in time that itself spans no duration of time. A clock shall tick only once at
any simulation time and the sampled values for that simulation time are used for evaluation of concurrent
assertions. In an assertion, the sampled value is the only valid value of a variable at a clock tick. Figure 17-1
shows the values of a variable as the clock progresses. The value of signal req islow at clock ticks 1 and 2.
At clock tick 3, the value is sampled as high and remains high until clock tick 6. The sampled value of variable
req a clock tick 6 islow and remains low until clock tick 10. Notice that the simulation value transitions to
high at clock tick 9. However, the sampled value at clock tick 9 islow.

e T TTERHTTTRTT T
ticks I

1 2 13 4 5 ,6 7 8 19

|

clock ticks 10 11 12 13 14
1 |

II
req | | !

Figure 17-1 — Sampling a variable on simulation ticks

An expression used in an assertion is always tied to a clock definition. The sampled values are used to evaluate
value change expressions or boolean subexpressions that are required to determine a match of a sequence.

Note:

— Itisimportant to ensure that the defined clock behavior is glitch free. Otherwise, wrong values can be sam-
pled.

— If avariable that appears in the expression for clock also appears in an expression with an assertion, the
values of the two usages of the variable can be different. The current value of the variable is used in the
clock expression, while the sampled value of the variable is used within the assertion.

The clock expression that controls evaluation of a sequence can be more complex than just a single signal
name. Expressions such as (clk && gating signal) and (clk iff gating signal) can beused to
represent a gated clock. Other more complex expressions are possible. However, in order to ensure proper
behavior of the system and conform as closely as possible to truly cycle-based semantics, the signalsin a clock
expression must be glitch-free and should only transition once at any simulation time.

An example of aconcurrent assertion is;

base rulel: assert property (cont prop(rst,inl,in2)) pass stat else fail stat;

200 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

The keyword property distinguishes a concurrent assertion from an immediate assertion. The syntax of con-
current assertionsis discussed in 17.13.

17.4 Boolean expressions

The expressions used in sequences are evaluated over sampled values of the variables that appear in the
expressions. The outcome of the evaluation of an expression is boolean and is interpreted the same way as an
expression isinterpreted in the condition of aprocedural if statement. That is, if the expression evaluatesto x,
Z, or o, thenit isinterpreted as being false. Otherwise, it is true.

There are certain restrictions on the expressions that can appear in concurrent assertions. The restrictions on
operand types, variables, and operators are specified in the following sections.

Expressions are allowed to include function calls, but certain semantic restrictions are imposed.
— Functions that appear in expressions cannot contain output or re £ arguments (const ref are alowed).

— Functions should be automatic (or preserve no state information) and have no side effects.

17.4.1 Operand types

The following types are not allowed:

— non-integer types (shortreal, real and realtime)
— string

— event

— chandle

— class

— associative arrays

— dynamic arrays

Fixed size arrays, packed or unpacked, can be used as a whole or as part selects or as indexed bit or part
selects. The indices can be constants, parameters, or variables.

The following example shows some possible forms of comparison of members of structures and unions:
typedef int [4] array;
typedef struct { int a, b, c,d } record;
union { record r; array a; } p, 4d;

The following comparisons are legal in expressions:
p.a == g.a

and
p.r == q.r

The following example provides further illustration of the use of arraysin expressions.
logic [7:0] arrayA [0:15], arrayB[0:15];

The following comparisons are legal:

arrayA == arrayB;

Copyright 2004 Accellera. All rights reserved. 201

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001
arrayA != arrayB;
arrayA[i] >= arrayBI[j];

arrayB[i] [j+:2] == arrayAlk] [m-:2];
(arrayA[i] & (~arrayB[j])) == 0;

17.4.2 Variables

The variables that can appear in expressions must be static design variables or function calls returning values
of types described in Section 17.4.1. Static variables declared in programs, interfaces or clocking blocks can
also be accessed. If areference isto a static variable declared in atask, that variable is sampled as any other
variable, independent of calls to the task.

17.4.3 Operators

All operators that are valid for the types described in Section 17.4.1 are allowed with the exception of assign-
ment operators and increment and decrement operators. SystemVerilog includes the C assignment operators,
such as +=, and the C increment and decrement operators, ++ and --. These operators cannot be used in expres-
sions that appear in assertions. This restriction prevents side effects.

202 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

17.5 Sequences

sequence_expr ;= // from Annex A.2.10
cycle delay range sequence_expr { cycle delay range sequence_expr }
| sequence_expr cycle delay range sequence_expr { cycle delay range sequence_expr }
| expression_or_dist [boolean_abbrev |
| (expression_or_dist {, sequence_match_item}) [boolean_abbrev]
| sequence_instance [sequence_abbrev |
| ('sequence_expr {, sequence_match_item }) [sequence_abbrev]
| sequence_expr and sequence_expr
| sequence_expr inter sect sequence_expr
| sequence_expr or sequence_expr
| first_match (sequence_expr {, sequence_match_item})
| expression_or_dist throughout sequence_expr
| sequence_expr within sequence_expr
| clocking_event sequence_expr
cycle delay range::=
integral_number
| ## identifier
| ## (constant_expression)
| ##[cycle _delay const_range expression |
sequence_match_item ::=
operator_assignment
| inc_or_dec_expression
| subroutine_call
seguence instance ::=
ps_sequence identifier [([actual_arg list])]
actua_arg list ::=
actual_arg_expr { , actua_arg_expr }
| . formal_identifier (actual_arg expr) { , . formal_identifier (actual_arg expr)}
actual_arg_expr ;=
event_expression
| $
boolean_abbrev ::=
consecutive_repetition
| non_consecutive_repetition
| goto_repetition
sequence_abbrev ::= consecutive_repetition
consecutive_repetition ::=[* const_or_range_expression |
non_consecutive repetition ::=[= const_or_range_expression |
goto_repetition ::=[-> const_or_range_expression |
const_or_range_expression ::=
constant_expression
| cycle delay _const _range expression
cycle delay const_range expression ::=
constant_expression : constant_expression
| constant_expression : $
expression_or_dist ::= expression [dist { dist_list}]

Syntax 17-2—Sequence syntax (excerpt from Annex A)

Copyright 2004 Accellera. All rights reserved. 203

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Properties are often constructed out of sequential behaviors. The sequence feature provides the capability to
build and manipul ate sequential behaviors. The simplest sequential behaviorsare linear. A linear sequenceisa
finite list of SystemVerilog boolean expressionsin alinear order of increasing time. The linear sequenceis said
to match along a finite interval of consecutive clock ticks provided the first boolean expression evaluates to
true at the first clock tick, the second boolean expression evaluates to true at the second clock tick, and so
forth, up to and including the last boolean expression evaluating to true at the last clock tick. A single boolean
expression is an example of asimple linear sequence, and it matches at a single clock tick provided the bool-
ean expression evaluates to true at that clock tick.

More complex sequential behaviors are described by SystemVerilog sequences. A sequence is a regular
expression over the SystemVerilog boolean expressions that concisely specifies a set of zero, finitely many, or
infinitely many linear sequences. If at least one of the linear sequences from this set matches along a finite
interval of consecutive clock ticks, then the sequence is said to match along that interval.

A property may involve checking of one or more sequential behaviors beginning at various times. An
attempted eval uation of a sequence is a search for amatch of the sequence beginning at a particular clock tick.
To determine whether such a match exists, appropriate boolean expressions are evaluated beginning at the par-
ticular clock tick and continuing at each successive clock tick until either amatch isfound or it is deduced that
no match can exist.

Sequences can be composed by concatenation, analogous to a concatenation of lists. The concatenation speci-
fiesadelay, using ##, from the end of the first sequence until the beginning of the second sequence.

The following is the syntax for sequence concatenation.

sequence_expr ;= /l from Annex A.2.10
cycle delay range sequence_expr { cycle delay range sequence_expr }
| sequence_expr cycle delay range sequence expr { cycle delay range sequence expr }

cycle delay range::=
integral_number
| ## identifier
| ## (constant_expression)
| ##[cycle_delay const_range expression |
cycle delay const_range expression ::=
constant_expression : constant_expression
| constant_expression : $

Syntax 17-3—Sequence concatenation syntax (excerpt from Annex A)

In this syntax:
— constant_expression is computed at compile time and must result in an integer value.
— constant_expression can only be 0 or greater.

— The ¢ token is used to indicate the end of simulation. For formal verification tools, $ is used to indicate a
finite, unbounded, range.

— When arange is specified with two expressions, the second expression must be greater or equal to the first
expression.

The context in which a sequence occurs determines when the sequence is evaluated. The first expressionin a
sequence is checked at the first occurrence of the clock tick at or after the expression that triggered evaluation
of the sequence. Each successive element (if any) in the sequence is checked at the next subsequent occurrence
of the clock.

A #i# followed by a number or range specifies the delay from the current clock tick to the beginning of the

204 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

sequence that follows. The delay ##1 indicates that the beginning of the sequence that followsis one clock tick
later than the current clock tick. The delay ##0 indicates that the beginning of the sequence that follows is at
the same clock tick asthe current clock tick.

When used as a concatenation between two sequences, the delay is from the end of the first sequence to the
beginning of the second sequence. The delay ##1 indicates that the beginning of the second sequence is one
clock tick later than the end of the first sequence. The delay ##0 indicates that the beginning of the second
sequenceis at the same clock tick as the end of the first sequence.

The following are examples of delay expressions. * true is aboolean expression that always evaluates to true
and isused for visua clarity. It can be defined as:

‘define true 1

##0 a // means a

##1 a // means ‘true ##1 a

##2 a // means ‘true ##1 ‘true ##1 a

##[0:3]a // means (a) or (‘true ##1 a) or (‘true ##1 ‘true ##1 a) or

(‘true ##1 ‘true ##1 ‘true ##1 a)
a ##2 b // meansa ##1 ‘true ##1 b

The sequence:

req ##1 gnt ##1 !req
specifies that req be true on the current clock tick, gnt shall be true on the first subsequent tick, and req shall
be false on the next clock tick after that. The ##1 operator specifies one clock tick separation. A delay of more
than one clock tick can be specified, asin:

req ##2 gnt

This specifies that req shall be true on the current clock tick, and gnt shall be true on the second subsequent
clock tick, as shown in Figure 17-2.

0 sl 2
clk [| | L[1
req [|1
gnt [

Figure 17-2 — Concatenation of sequences

The following specifies that signal b shall be true on the Nth clock tick after signal a:
a ##N b // check b on the Nth sample

To specify a concatenation of overlapped sequences, where the end point of one sequence coincides with the
start of the next sequence, avalue of 0 is used, as shown below.

a ##1 b ##1 ¢ // first sequence seql
d ##1 e ##1 £ // second sequence seq2
(a ##1 b ##1 c) ##0 (d ##1 e ##1 f) // overlapped concatenation

In the above example, ¢ must be true at the endpoint of sequence seq1, and d must be true at the start of

sequence seq2. When concatenated with O clock tick delay, ¢ and d must be true at the same time, resulting in
a concatenated sequence equivalent to:

Copyright 2004 Accellera. All rights reserved. 205

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

a ##1 b ##1 c&&d ##1 e ##1 £

It should be noted that no other form of overlapping between the sequences can be expressed using the concat-
enation operation.

In cases where the delay can be any value in arange, atime window can be specified as follows:
req ##[4:32] gnt

In the above case, signal req must be true at the current clock tick, and signal gnt must be true at some clock
tick between the 4th and the 32nd clock tick after the current clock tick.

The time window can extend to afinite, but unbounded, range by using $ asin the example below.
req ##[4:3] gnt
A sequence can be unconditionally extended by concatenation with *true.
a ##1 b ##1 c ##3 ‘true
After satisfying signal ¢, the sequence length is extended by 3 clock ticks. Such adjustments in the length of

sequences can be required when complex sequences are constructed by combining simpler sequences.

17.6 Declaring sequences

A sequence can bedeclared in
— amodule
— aninterface
— aprogram
— aclocking block
— apackage

— acompilation-unit scope

Sequences are declared using the following syntax.:

206 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

concurrent_assertion_item_declaration ::= [/l from Annex A.2.10

| sequence_declaration
sequence_declaration ::=
sequence sequence_identifier [([list_of_formals])];
{ assertion_variable declaration}
sequence_expr ;
endsequence| : sequence_identifier]
seguence_instance ::=
ps_sequence identifier [([actual_arg list])]
actua_arg_list ::=
actual_arg_expr { , actua_arg_expr }
| . formal_identifier (actual_arg_expr) { , . formal_identifier (actual_arg_expr) }
actual_arg_expr ;=
event_expression
| $
assertion_variable declaration ::=
data typelist_of variable identifiers;

Syntax 17-4—Declaring sequence syntax (excerpt from Annex A)
The clocking_event specifies the clock for the sequence.
A sequence is declared with optional formal arguments. When a sequence is instantiated, actual arguments can

be passed to the sequence. The sequence gets expanded with the actual arguments by replacing the formal
arguments with the actual arguments. Semantic checks are performed to ensure that the expanded sequence

with the actual argumentsislegal.

An actual argument can replace an:

identifier
expression

event control expression

— upper rangeas $

Note that variables used in a sequence that are not formal arguments to the sequence are resolved according to
the scoping rules from the scope in which the sequence is declared.

sequence sl;

@ (posedge clk) a ##1 b ##1 c;
endsequence
sequence S2;

@ (posedge clk) d ##1 e ##1 £;
endsequence
sequence s3;

@ (negedge clk) g ##1 h ##1 i;
endsequence

In this example, sequences s1 and s2 are evaluated on successive posedge events of c1k. The sequence s3 is
evaluated on successive negedge events of c1k.

Another example of sequence declaration, which includes arguments is shown below:

Copyright 2004 Accellera. All rights reserved. 207

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001

sequence s20 1 (data,en);
(!frame && (data==data bus)) ##1 (c_be[0:3] == en);
endsequence

Sequence s20_1 does not specify aclock. In this case, a clock would be inherited from some external source,
such asaproperty Or an assert statement. A sequence can be referred to by its name. A hierarchical name
can be used, consistent with the SystemVerilog naming conventions. A sequence can be referenced in aprop-
erty, an assert Statement, or a cover Statement.

To use a named sequence as a subsequence of another sequence, simply reference its name. The evaluation of
a sequence that references a named sequence is performed in the same way asif the named sequence was con-
tained as alexical part of the referencing sequence, with the forma arguments of the named sequence replaced
by the actual ones and the remaining variables in the named sequence resolved according to the scope of the
declaration of the named sequence. An example is shown below:

sequence s;
a ##1 b ##1 c;
endsequence
sequence rule;
@ (posedge sysclk)
trans ##1 start_trans ##1 s ##1 end_trans;
endsequence

Sequence rule inthe preceding exampleis equivalent to:

sequence rule;

@ (posedge sysclk)

trans ##1 start trans ##1 a ##1 b ##1 c ##1 end trans ;
endsequence

Any form of syntactic cyclic dependency of the sequence names is disallowed. The example below illustrates
anillegal dependency of s1 on s2 and s2 on s1, because it creates a cyclic dependency.

sequence sl;

@ (posedge sysclk) (x ##1 s2);
endsequence
sequence S2;

@ (posedge sysclk) (y ##1 s1);
endsequence

17.7 Sequence operations

17.7.1 Operator precedence

Operator precedence and associativity are listed in Table 17-1, below. The highest precedenceis listed first.

Table 17-1: Operator precedence and associativity

208

SystemVerilog expression operators Associativity
(*1 [=1 [->1]
#4 left
throughout right
within left

Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Table 17-1: Operator precedence and associativity

intersect left
and left
or left

17.7.2 Repetition in sequences

Following is the syntax for sequence repetition.

sequence_expr ;= // from Annex A.2.10

| expression_or_dist [boolean_abbrev |

| (expression_or_dist {, sequence_match_item}) [boolean_abbrev]
| sequence_instance [sequence_abbrev |

| ('sequence_expr {, sequence_match_item}) [sequence_abbrev |

boolean_abbrev ::=
consecutive _repetition
| non_consecutive repetition
| goto_repetition
sequence_abbrev ::= consecutive_repetition
consecutive repetition ::= [* const_or_range_expression |
non_consecutive repetition ::=[= const_or_range_expression |
goto_repetition ::=[-> const_or_range_expression |
const_or_range_expression ::=
constant_expression
| cycle delay_const_range expression
cycle delay const_range expression ::=
constant_expression : constant_expression
| constant_expression : $

Syntax 17-5—Sequence repetition syntax (excerpt from Annex A)

The number of iterations of a repetition can either be specified by exact count or be required to fall within a
finite range. If specified by exact count, then the number of iterationsis defined by a non-negative integer con-
stant expression. If required to fall within afinite range, then the minimum number of iterationsis defined by a
non-negative integer constant expression and the maximum number of iterations is either defined by a non-
negative integer constant expression or is $, indicating afinite, but unbounded maximum.

If both the minimum and maximum numbers of iterations are defined by non-negative integer constant expres-
sions, then the minimum number must be less than or equal to the maximum number.

Three kinds of repetition are provided:

— consecutive repetition ([*): Consecutive repetition specifies finitely many iterative matches of the oper-
and sequence, with a delay of one clock tick from the end of one match to the beginning of the next. The
overall repetition sequence matches at the end of the last iterative match of the operand.

— goto repetition ([->): Goto repetition specifies finitely many iterative matches of the operand boolean
expression, with a delay of one or more clock ticks from one match of the operand to the next successive

Copyright 2004 Accellera. All rights reserved. 209

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

match and no match of the operand strictly in between. The overall repetition sequence matches at the last
iterative match of the operand.

— non-consecutive repetition ([=): Non-consecutive repetition specifies finitely many iterative matches of
the operand boolean expression, with adelay of one or more clock ticks from one match of the operand to
the next successive match and no match of the operand strictly in between. The overall repetition sequence
matches at or after the last iterative match of the operand, but before any later match of the operand.

The effect of consecutive repetition of a subsequence within a sequence can be achieved by explicitly iterating
the subsequence, as:

a ##1 b ##1 b ##1 b ##1 c

Using the consecutive repetition operator [*31, which indicates 3 iterations, this sequential behavior is speci-
fied more succinctly:

a ##1 b [*3] ##1 c
A consecutive repetition specifies that the operand sequence must match a specified number of times. The con-
secutive repetition operator [*N] specifies that the operand sequence must match N times in succession. For
example:

a [*3] means a ##1 a ##1 a
Using 0 as the repetition number, an empty sequence results, as:

a [*0]
An empty sequence is one that does not match over any positive number of clocks. The following rules apply

for concatenating sequences with empty sequences. An empty sequence is denoted as empty and a sequence is
denoted as seq.

— (empty ##0 seq) does not result in amatch

— (seq ##0 empty) does not result in a match

— (empty ##n seq), where n isgreater than O, is equivalent to (##(n-1) seq)

— (seq ##n empty), where n is greater than O, is equivalent to (seq ##(n-1) 'true)

For example,

b ##1 (a[*0] ##0 c)
produces no match of the sequence.

b ##1 a[*0:1] ##2 c
isequivalent to

(b ##2 c) or (b ##1 a ##2 c)

The syntax allows combination of a delay and repetition in the same sequence. The following are both
allowed:

‘true ##3 (a [*3]) // means ‘true ##1 ‘true ##1 ‘true ##1 a ##1 a ##1 a
(‘true ##2 a) [*3] // means (‘true ##2 a) ##1 (‘true ##2 a) ##1
// (‘true ##2 a), which in turn means ‘true ##1 ‘true ##1

// a ##1 ‘true ##1 ‘true ##1 a ##1 ‘true ##1 ‘true ##1 a

A sequence can be repeated as follows:

210 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

(a ##2 b) [*5]
Thisisthe same as:
(a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b)

A repetition with arange of min minimum and max maximum number of iterations can be expressed with the
consecutive repetition operator [* min:max].

Asan example,
(a ##2 b) [*1:5]

isequivalent to

(a ##2 b)

or (a ##2 b ##1 a ##2 Db)

or (a ##2 b ##1 a ##2 b ##1 a ##2 b)

or (a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b)

or (a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b)
Similarly,

(a[*0:3] ##1 b ##1 <)
isequivalent to

(b ##1 c)

or (a ##1 b ##1 c)

or (a ##1 a ##1 b ##1 c)

or (a ##1 a ##1 a ##1 b ##1 c)

To specify afinite, but unbounded, number of iterations, the dollar sign ($) is used. For example, the repeti-
tion:

a ##1 b [*1:3] ##1 c

matches over an interval of three or more consecutive clock ticksif a istrue on the first clock tick, cistrueon
the last clock tick, and b istrue at every clock tick strictly in between the first and the last.

Specifying the number of iterations of arepetition by exact count is equivalent to specifying a range in which
the minimum number of repetitionsis equa to the maximum number of repetitions. In other words, seq [*n]
isequivalent to seqg [*n:n].

The goto repetition (non-consecutive exact repetition) takes a boolean expression rather than a sequence as
operand. It specifies theiterative matching of the boolean expression at clock ticks that are not necessarily con-
secutive and ends at the last iterative match. For example,

a ##1 b [->2:10] ##1 c
matches over an interval of consecutive clock ticks provided a istrue on thefirst clock tick, c istrue on the last
clock tick, b is true on the penultimate clock tick, and, including the penultimate, there are at least 2 and at
most 10 not-necessarily-consecutive clock ticks strictly in between the first and last on which b istrue. This
sequence is equivalent to:

a ##1 ((!b[*0:3] ##1 b) [*2:10]) ##1 c

The non-consecutive repetition is like the goto repetition except that a match does not have to end at the last
iterative match of the operand boolean expression. The use of non-consecutive repetition instead of goto repe-

Copyright 2004 Accellera. All rights reserved. 211

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

tition allows the match to be extended by arbitrarily many clock ticks provided the boolean expression is false
on al of the extra clock ticks. For example,

a ##1 b [=2:10] ##1 c
matches over an interval of consecutive clock ticks provided a istrue on thefirst clock tick, c istrue on the last
clock tick, and there are at least 2 and at most 10 not-necessarily-consecutive clock ticks strictly in between the
first and last on which b istrue. This sequence is equivalent to:

a ##1 ((!b [*0:3] ##1 b) [*2:10]) ##1 !b[*0:5] ##1 c

17.7.3 Sampled value functions

This section describes the system functions available for accessing sampled values of an expression. These
functions include the capability to access current sampled value, access sampled value in the past, or detect
changes in sampled value of an expression. Sampling of an expression is explained in Section 17.3. The fol-
lowing functions are provided.

$sampled (expression [, clocking event])

Srose(expression [, clocking event])

$fell (expression [, clocking event])

$stable(expression [, clocking event])

Spast (expressionl [, number of ticks] [, expression2] [, clocking event])

The use of these functions is not limited to assertion features; they can be used as expressions in procedural
code as well. The clocking event, although optiona as an explicit argument to the functions, is required for
their semantics. The clocking event is used to sample the value of the argument expression.

The clocking event must be explicitly specified as an argument, or inferred from the code where it is used. The
following rules are used to infer the clocking event:

— if used in an assertion, the appropriate clocking event from the assertion is used.
— if used in an action block of a singly-clocked assertion, the clock of the assertion is used.

— if used in aprocedural block, the inferred clock, if any, for the procedural code (Section 17.13.5) is used.
Otherwise, default clocking (Section 15.11) is used.

When these functions are used in an assertion, the clocking event argument of the functions, if specified, shall
be identical to the clocking event of the expression in the assertion. In the case of multi-clock assertion, the
appropriate clocking event for the expression where the function is used, is applied to the function.

Function $sampled returns the sampled value of the expression with respect to the last occurrence of the
clocking event. When $sampled isinvoked prior to the occurrence of the first clocking event, the value of X
isreturned. The use of $sampled in assertions, although allowed, is redundant, as the result of the function is
identical to the sampled value of the expression itself used in the assertion.

Three functions are provided to detect changes in sampled values: $rose, $fell and $stable.

A value change function detects the change in the sampled value of an expression. The clocking event is used
to obtain the sampled value of the argument expression at a clock tick prior to the current simulation time unit.
Here, the current simulation time unit refers to the simul ation time unit in which the function is evaluated. This
sampled value is compared against the value of the expression determined at the prepone time of the current
simulation time unit. The result of a value change expression is true or false and can be used as a boolean
expression.

212 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

srose returnstrueif the least significant bit of the expression changed to 1. Otherwise, it returns false.
$fell returnstrueif the least significant bit of the expression changed to 0. Otherwise, it returns false.
$stable returnstrueif the value of the expression did not change. Otherwise, it returns false.

When these functions are called at or before the first clock tick of the clocking event, the results are computed
by comparing the current sampled value of the expression to X.

Figure 17-3 illustrates two examples of value changes:
— Value change expression e1 is defined as srose (req)

— Value change expression e2 is defined as $fell (ack)

i

clock ticks 9 10 11 12 13 14

req

ack

el

e2

Figure 17-3 — Value change expressions

The clock ticks used for sampling the variables are derived from the clock for the property, which is different
from the simulation ticks. Assume, for now, that this clock is defined elsewhere. At clock tick 3, e1 occurs
because the value of req at clock tick 2 was low and at clock tick 3, the value is high. Similarly, e2 occurs at
clock tick 6 because the value of ack was sampled as high at clock tick 5 and sampled as low at clock tick 6.

The example below illustrates the use of $rose in SystemVerilog code outside assertions.

always @(posedge clk)
regl <= a & S$rose(b);

In this example, the clocking event (posedge clk) isappliedto $rose. $rose istrue whenever the sampled
value of b changed to 1 from its sampled value at the previous tick of the clocking event.

In addition to accessing value changes, the past values can be accessed with the spast function. The follow-
ing three optional arguments are provided:

expression2 is used as a gating expression for the clocking event

number_of ticks specifies the number of clock ticks in the past

clocking_event specifies the clocking event for sampling expressionl
expressionl and expression2 can be any expression allowed in assertions.
number_of ticks must be one or greater. If number_of ticks is not specified, then it defaults to 1. $past
returns the sampled value of the expression that was present number_of_ticks prior to the time of evaluation of

$past. A clock tick is based on clocking_event. If the specified clock tick in the past is before the start of sim-
ulation, the returned value from the $past function isavalue of X.

Copyright 2004 Accellera. All rights reserved. 213

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

The optional argument clocking_event specifies the clock for the function. The rules governing the usage of
clocking_event are same as those described for the value change function.

When intermediate optional arguments between two arguments are not needed, a comma must be placed for
each omitted argument. For example,

Spast (inl, , enable);

Here, acommais specified to omit number_of _ticks. The default of oneis used for the empty number_of ticks
argument. Note that acommafor the omitted clocking_event argument is not needed, as it does not fall within
the specified arguments.

$past can be used in any System Verilog expression. An example is shown below.

always @ (posedge clk)
regl <= a & S$past(b);

In this example, the clocking event (posedge clk) isapplied to spast. $past is evauated in the current
occurrence of (posedge clk), and returns the value of b sampled at the previous occurrence of (posedge
clk).

When expression2 is specified, the sampling of expressionl is performed based on its clock gated with
expression2. For example,

always @ (posedge clk)
if (enable) g <= d;

always @(posedge clk)
assert (done |=> (out == S$past (g, 2,enable)) ;

In this example, the sampling of g for evaluating $past isbased on the clocking expression

posedge clk iff enable

17.7.4 AND operation

The binary operator and is used when both operands are expected to match, but the end times of the operand
seguences can be different.

sequence_expr ::= // from Annex A.2.10

| sequence_expr and sequence_expr

Syntax 17-6—and operator syntax (excerpt from Annex A)

The two operands of and are sequences. The requirement for the match of the and operation is that both the
operands must match. The operand sequences start at the same time. When one of the operand segquences
matches, it waits for the other to match. The end time of the composite sequence is the end time of the operand
sequence that completes last.

When te1 and te2 are sequences, then the composite sequence;

tel and te2
— Maitchesif te1 and te2 match.

— The end timeisthe end time of either te1 or te2, whichever matches last.

214 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

The following example is a sequence with operator and, where the two operands are sequences.

(tel ##2 te2) and (te3 ##2 ted ##2 teb)

clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

te2

er || |
i
i
1
i

te3

ted

te5

1
1
1
[}
[}
1
1
1
tel ##2 te2 I*———’A

]

1

, |

te3 ##2 ted ##2 te5 l - L ____1_ ,A

1

|
(tel ##2 te2) and 1

(te3 ##2 ted #4#2 teb) R S

Figure 17-4 — ANDing (and) two sequences

The operation asillustrated in Figure 17-4 shows the evaluation attempt at clock tick 8. Here, the two operand
sequencesare (tel ##2 te2) and (te3 ##2 ted4 ##2 tes). Thefirst operand sequence requiresthat first
tel evaluatesto true followed by te2 two clock ticks later. The second sequence requires that first te3 evalu-
ates to true followed by te4 two clock ticks later, followed by tes two clock ticks later.

This attempt results in a match since both operand sequences match. The end times of matches for the individ-
ual sequences are clock ticks 10 and 12. The end time for the composite sequence is the later of the two end
times, so amatch is recognized for the composite sequence at clock tick 12.

In the following example, the first operand sequence has a concatenation operator with range from 1 to 5:
(tel ##[1:5] te2) and (te3 ##2 te4 ##2 teb)

Thefirst operand sequence requiresthat te1 evaluateto true and that te2 evaluateto true 1, 2, 3, 4, or 5 clock
tickslater. The second operand sequenceis the same as in the previous example. To consider all possibilities of
amatch of the composite sequence, the following steps can be taken:

1) Five threads of evaluation are started for the five possible linear sequences associated with the first
sequence operand.

2) The second operand sequence has only one associated linear sequence, so only one thread of evaluation is
started for it.

3) Figure 17-5 shows the evaluation attempt beginning at clock tick 8. All five linear sequences for the first
operand sequence match, as shown in a time window, so there are five matches of the first operand
sequence, ending at clock ticks 9, 10, 11, 12 and 13 respectively. The second operand sequence matches at
clock tick 12.

Copyright 2004 Accellera. All rights reserved. 215

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

4) Each match of the first operand sequence is combined with the single match of the second operand
sequence, and the rules of the and operation determine the end time of the resulting match of the composite
sequence.

Theresult of this computation is five matches of the composite sequence, four of them ending at clock tick 12,
and the fifth ending at clock tick 13. Figure 17-5 shows the matches of the composite sequence ending at clock
ticks 12 and 13.

clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e ||

te2

te3 |

ted

te5

tel ##[1:5] te2

te3 ##2 ted ##2 teb - r-"\-"71- ’A

(tel ##[1:5] te2) and '] ‘
(te3 ##2 ted ##2 te5) il i s \’A A

Figure 17-5 — ANDing (and) two sequences, including a time range

If tel and te2 are sampled expressions (not sequences), the sequence (tel and te2) matchesif tel and
te2 both evaluate to true.

An example is illustrated in Figure 17-6, which shows the results for attempts at every clock tick. The
sequence matches at clock tick 1, 3, 8, and 14 because both tel and te2 are simultaneously true. At all other
clock ticks, match of the and operation fails because either tel or te2 isfase.

clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14

|

te2

L L] L[] |
ctasee A Y AYVYVAVYVYVYA

Figure 17-6 — ANDing (and) two boolean expressions

216 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

17.7.5 Intersection (AND with length restriction)

The binary operator intersect is used when both operand sequences are expected to match, and the end
times of the operand sequences must be the same.

sequence_expr ::= // from Annex A.2.10

| sequence_expr inter sect sequence_expr

Syntax 17-7—intersect operator syntax (excerpt from Annex A)

Thetwo operands of intersect are sequences. The requirements for match of the intersect operation are;
— Both the operands must match.

— Thelengths of the two matches of the operand sequences must be the same.

The additional requirement on the length of the sequencesis the basic difference between and and
intersect.

An attempted evaluation of an intersect Sequence can result in multiple matches. The results of such an
attempt can be computed as follows.

— Matches of the first and second operands that are of the same length are paired. Each such pair resultsin a
match of the composite sequence, with length and endpoint equal to the shared length and endpoint of the
paired matches of the operand sequences.

— If no such pair is found, then there is no match of the composite sequence.

Figure 17-7 issimilar to Figure 17-5, except that and isreplaced by intersect. In thiscase, unlike in Figure
17-5, thereis only asingle match at clock tick 12.

clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e ||

te2

te3 |

ted

teb5

tel ##[1:5] te2 e A A A A:

te3 #4#2 ted ##2 te5 Ll __l_ ,A

|

|

(tel ##[1:5] te2) intersect le L _1__1l._ ,A
(te3 #2 ted #2 te5) ~

Figure 17-7 — Intersecting two sequences

Copyright 2004 Accellera. All rights reserved. 217

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

17.7.6 OR operation

The operator or is used when at least one of the two operand sequences is expected to match.

sequence_expr ;= // from Annex A.2.10

| sequence_expr or sequence_expr

Syntax 17-8—or operator syntax (excerpt from Annex A)
The two operands of or are sequences.
If the operands te1 and te2 are expressions, then
tel or te2
matches at any clock tick on which at least one of tel and te2 evaluatesto true.
Figure 17-8 illustrates an or operation for which the operands te1 and te2 are expressions. The composite

sequence does not match at clock ticks 7 and 13 because te1 and te2 are both false at those times. At all other
clock ticks, the composite sequence matches, as at least one of the two operands evaluates to true.

clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14

||

e | | |]] ||
etocz A A A A AAY AAAALAYA

Figure 17-8 — ORing (or) Two Sequences

When te1 and te2 are sequences, then the sequence

tel or te2
matches if at least one of the two operand sequences tel and te2 matches. Each match of either te1 or te2
congtitutes a match of the composite sequence, and its end time as a match of the composite sequence is the
same as its end time as a match of tel or of te2. In other words, the set of matches of tel or te2 isthe
union of the set of matches of te1 with the set of matches of te2.

The following example shows a sequence with operator or where the two operands are sequences. Figure 17-9
illustrates this example.

(tel ##2 te2) or (te3 ##2 ted ##2 teb)

218 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

clk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

tel | |

te2

te3 |

ted

te5

-t t——1—

tel ##2 te2

te3 ##2 ted ##2 teb

(tel ##2 te2) or
(te3 ##2 ted ##2 teb)

Figure 17-9 — ORing (or) two sequences

Here, the two operand sequences are: (tel ##2 te2) and (te3 ##2 te4 ##2 te5). Thefirst sequence
requires that te1 first evaluates to true, followed by te2 two clock ticks later. The second sequence requires
that te3 evaluates to true, followed by te4 two clock ticks later, followed by tes two clock ticks later. In
Figure 17-9, the evaluation attempt for clock tick 8 is shown. The first sequence matches at clock tick 10 and
the second sequence matches at clock tick 12. So, two matches for the composite sequence are recognized.

In the following example, the first operand sequence has a concatenation operator with range from1to 5
(tel ##[1:5] te2) or (te3 ##2 ted ##2 teb)

Thefirst operand sequence requiresthat te1 evaluateto true and that te2 evaluateto true 1, 2, 3, 4, or 5 clock
ticks later. The second operand sequence requires that te3 evaluate to true, that te4 evaluate to true 2 clock
ticks later, and that tes evaluate to true another 2 clock ticks later. The composite sequence matches at any
clock tick on which at least one of the operand sequences matches. As shown in Figure 17-10, for the attempt
at clock tick 8, the first operand sequence matches at clock ticks 9, 10, 11, 12, and 13, while the second oper-
and matches at clock tick 12. The composite sequence therefore has one match at each of clock ticks 9, 10, 11,
and 13 and has two matches at clock tick 12.

Copyright 2004 Accellera. All rights reserved. 219

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

clk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

tel | |

te2

te3 |

ted

te5

tel ##[1:5] te2

te3 ##2 ted ##2 teb5

re
.
.
.

(tege#l#gﬁgalﬁltgzt)eg; :‘ H A A A A:

Figure 17-10 — ORing (or) two sequences, including a time range

17.7.7 first_match operation

The first match operator matches only the first of possibly multiple matches for an evaluation attempt of
its operand sequence. This alows all subsequent matches to be discarded from consideration. In particular,
when a sequence is a subseguence of alarger sequence, then applying the £irst_match operator has signifi-
cant effect on the evaluation of the enclosing sequence.

sequence_expr ::= // from Annex A.2.10

| first_match (sequence_expr {, sequence_match _item})

Syntax 17-9—first_match operator syntax (excerpt from Annex A)

An evaluation attempt of £irst match (Seq) resultsin an evaluation attempt for the operand seq beginning at
the same clock tick. If the evaluation attempt for seq produces no match, then the evaluation attempt for
first match (Seq) produces no match. Otherwise, the match of seq with earliest ending clock tick is amatch
of first match (seq). If there are multiple matches of seq with the same ending clock tick asthe earliest one,
then all those matches are matches of £irst match (Seq).

The example below shows a variable delay specification.

sequence tl;
tel ## [2:5] te2;
endsequence
sequence tsl;
first match(tel ## [2:5] te2);
endsequence

Here, tel and te2 are expressions. Each attempt of sequence t 1 can result in matches for up to four of the fol-
lowing sequences:

220 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

tel ##2 te2
tel ##3 te2
tel ##4 te2
tel ##5 te2

However, sequence ts1 can result in a match for only one of the above four sequences. Whichever match of
the above four sequences endsfirst is amatch of sequence tsi.

As another example:

sequence t2;
(a ##[2:3] b) or (c ##[1:2] 4d);
endsequence
sequence ts2;
first match(t2);
endsequence

Each attempt of sequence t2 can result in matches for up to four of the following sequences:

##2 b
##3 b
##1 d
##2 d

Qo0 o

Sequence ts2 matches only the earliest ending match of these sequences. If a, b, ¢, and d are expressions,
then it is possible to have matches ending at the same time for both.

a ##2 b
c ##2 d

If both of these sequences match and (¢ ##1 d) does not match, then evaluation of ts2 results in these two
matches.

Sequence match items can be attached to the operand sequence of the first match operator. The sequence
match items are placed within the same set of parentheses that encloses the operand. Thus, for example, the
local variable assignment x = e can be attached to the first match of seq via

first match(seqg, x = e)
which is equivaent to

first match((seqg, x = e))

See Sections 17.8 and 17.9 for discussion of sequence match items.

17.7.8 Conditions over sequences

Sequences often occur under the assumptions of some conditions for correct behavior. A logical condition
must hold true, for instance, while processing a transaction. Also, occurrence of certain values is prohibited
while processing a transaction. Such situations can be expressed directly using the following construct:

sequence_expr ::= [/l from Annex A.2.10

| expression_or_dist throughout sequence_expr

Syntax 17-10—throughout construct syntax (excerpt from Annex A)

Copyright 2004 Accellera. All rights reserved. 221

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

The construct exp throughout seq isan abbreviation for:
(exp) [*0:3] intersect seq

The composite sequence, exp throughout seq, matches along a finite interval of consecutive clock ticks
provided seq matches along the interval and exp evaluates to true at each clock tick of the interval.

The following exampleisillustrated in Figure 17-11.

sequence burst rulel;
@ (posedge mclk)
$fell (burst mode) ##0
(!burst _mode) throughout (##2 ((trdy==0)&&(irdy==0)) [*7]);
endsequence

mclk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

burst_mode

irdy

trdy

(trdy==0) &&
(irdy==0)

burst_rulel it it i it Aty Al *v

Figure 17-11 — Match with throughout restriction fails

. |-

Figure 17-12 illustrates the evaluation attempt for sequence burst_rulel beginning at clock tick 2. Since
signal burst_mode ishigh at clock tick 1 and low at clock tick 2, $fell (burst_mode) istrue at clock tick
2. To complete the match of burst_rulel, the value of burst mode is required to be low throughout a
match of the subsequence (##2 ((trdy==0)&& (irdy==0)) [*7]) beginning at clock tick 2. This subse-
guence matches from clock tick 2 to clock tick 10. However, at clock tick 9 burst _mode becomes high,
thereby failing to match according to the rules for throughout.

If signal burst_mode were instead to remain low through at least clock tick 10, then there would be a match
of burst_rule1 from clock tick 2 to clock tick 10, as shown in Figure 17-12.

mclk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

burst_mode

irdy

trdy

(trdy==0) &&
(irdy==0)

burst_rulel PSR R N [,A

222 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Figure 17-12 — Match with throughout restriction succeeds

17.7.9 Sequence contained within another sequence

The containment of a sequence within another sequence is expressed as follows:

sequence_expr ::= [/l from Annex A.2.10

| sequence_expr within sequence_expr

Syntax 17-11—within construct syntax (excerpt from Annex A)
The construct seql within seqg2 isan abbreviation for:
(1[*0:3] ##1 seqgl ##1 1[*0:3]) intersect seq2

The composite sequence seql within seq2 matches along a finite interval of consecutive clock ticks pro-
vided seq2 matches along the interval and seq1 matches along some sub-interval of consecutive clock ticks.
That is, the matches of seq1 and seq2 must satisfy the following:

— The start point of the match of seq1 must be no earlier than the start point of the match of seq2.
— Theend point of the match of seq1 must be no later than the end point of the match of seq2.
For example, the sequence

ltrdy [*7] within ((sSfell irdy) ##1 !irdy[*8])

matches from clock tick 3 to clock tick 11 on the trace shown in Figure 17-12.

17.7.10 Detecting and using endpoint of a sequence
There are two ways in which a complex sequence can be decomposed into simpler subsequences.

One is to instantiate a named sequence by referencing its name. Evaluation of such a reference requires the
named sequence to match starting from the clock tick at which the reference is reached during the evaluation
of the enclosing sequence. For example:

sequence s;
a ##1 b ##1 c;
endsequence
sequence rule;
@ (posedge sysclk)
trans ##1 start trans ##1 s ##1 end trans;
endsequence

Sequence s is evaluated beginning one tick after the evaluation of start trans inthe sequence rule.
Another way to use a sequence is to detect its end point in another sequence. The end point of a sequenceis
reached whenever the ending clock tick of a match of the sequence is reached, regardless of the starting clock
tick of the match. The reaching of the end point can be tested in any sequence by using the method ended.
The syntax of the ended method is:

sequence instance.ended

ended isamethod on a sequence. The result of its operation is true or false. When method ended is evaluated
in an expression, it tests whether its operand sequence has reached its end point at that particular point in time.

Copyright 2004 Accellera. All rights reserved. 223

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Theresult of ended does not depend upon the starting point of the match of its operand sequence. An example
is shown below:

sequence el;

@ (posedge sysclk) Srose(ready) ##1 procl ##1 proc2 ;
endsequence
sequence rule;

@ (posedge sysclk) reset ##1 inst ##1 el.ended ##1 branch back;
endsequence

In this example, sequence e1 must match one clock tick after inst. If the method ended is replaced with an
instance of sequence e1, a match of e1 must start one clock tick after inst. Notice that method ended only
tests for the end point of e1, and has no bearing on the starting point of e1. ended can be used on sequences
that have formal arguments. For example with the declarations

sequence e2(a,b,c);
@ (posedge sysclk) Srose(a) ##1 b ##1 c;
endsequence
sequence rule2;
@ (posedge sysclk) reset ##1 inst ##1 e2(ready,procl,proc2) .ended
##1 branch back;
endsequence

rule2 isequivaent to rule2a below:

sequence e2 instantiated;
e2 (ready, procl,proc2) ;
endsequence
sequence rulela;
@ (posedge sysclk) reset ##1 inst ##1 e2 instantiated.ended ##1 branch back;
endsequence

There are additional restrictions on passing local variables into an instance of a sequence to which ended is
applied. See Section 17.8.

17.8 Manipulating data in a sequence

The use of a static SystemVerilog variable implies that only one copy exists. If data values need to be checked
in pipelined designs, then for each quantum of data entering the pipeline, a separate variable can be used to
store the predicted output of the pipeline for later comparison when the result actually exits the pipe. This stor-
age can be built by using an array of variables arranged in a shift register to mimic the data propagating
through the pipeline. However, in more complex situations where the latency of the pipe is variable and out of
order, this construction could become very complex and error prone. Therefore, variables are needed that are
local to and are used within a particular transaction check that can span an arbitrary interval of time and can
overlap with other transaction checks. Such a variable must thus be dynamically created when needed within
an instance of a sequence and removed when the end of the sequence is reached.

The dynamic creation of a variable and its assignment is achieved by using the local variable declarationin a
sequence or property declaration and making an assignment in the sequence.

seguence_expr ::= [/l from Annex A.2.10

| (expression_or_dist {, sequence_match item}) [boolean_abbrev]
| ('sequence expr {, sequence_match_item}) [sequence abbrev]

Syntax 17-12—variable assignment syntax (excerpt from Annex A)

224 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Thetype of variable is explicitly specified. The variable can be assigned at the end point of any syntactic sub-
sequence by placing the subsequence, comma separated from the sampling assignment, in parentheses. For
example, if in

a ##1 bl->1] ##1 c[*2]

it isdesired to assign x = e at the match of b [->11, the sequence can be rewritten as
a ##1 (b[->1], x = e) ##1l c[*2]

The local variable can be reassigned later in the sequence, asin
a ##1 (b[->1]1, x = e) ##1 (c[*2], x = x + 1)

For every attempt, a new copy of the variableis created for the sequence. The variable value can be tested like
any other SystemVerilog variable.

Hierarchical referencesto aloca variable are not allowed.

As an example of local variable usage, assume a pipeline that has a fixed latency of 5 clock cycles. The data
enters the pipe on pipe _in whenvalid in istrue, and the value computed by the pipeline appears 5 clock
cycleslater onthe signal pipe out1. The dataastransformed by the pipeis predicted by afunction that incre-
ments the data. The following property verifies this behavior:

property e;

int x;

(valid in, (x = pipe_in)) |-> ##5 (pipe outl == (x+1));
endproperty

Property e isevaluated as

1) Whenvalid in istrue, x isassigned the value of pipe in. If five cycleslater, pipe out1 isequal to
x+1, then property eistrue. Otherwise, property eisfalse.

2) Whenisvalid in false, property e evaluatesto true.
Variables can be used in sequences or properties.

sequence data check;

int x;

a ##1 la, x = data_in ##1 !b[*0:$] ##1 b && (data_out == x);
endsequence
property data check p

int x;

a ##1 !a, x = data_in |=> !b[*0:$] ##1 b && (data out == x);
endproperty

Local variables can be written on repeated sequences and accomplish accumulation of values.

sequence rep Vv;

int x;

‘true,x = 0 ##0

(la [* 0:8] ##1 a, x = x+data) [*4] ##1 b ##1 c && (data out == x);
endsequence

The local variables declared in one sequence are not visible in the sequence where it gets instantiated. An
example below illustrates an illegal accessto local variable vi of sequence sub_seql in sequence seql.

sequence sub_seql;
int v1;

Copyright 2004 Accellera. All rights reserved. 225

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001
a ##1 la, vl = data_in ##1 !b[*0:3] ##1 b && (data_out == v1);
endsequence
sequence seql;
c ##1 sub seql ##1 (dol == vl1); // error since vl is not visible
endsequence

To access alocal variable of a subsegquence, a local variable must be declared and passed to the instantiated
subsequence through an argument. An example below illustrates this usage.

sequence sub seg2(lv) ;

a ##1 l!a, lv = data_in ##1 !b[*0:3] ##1 b && (data_out == 1lv);
endsequence
sequence seq2;

int v1;

c ##1 sub seg2(vl) ##1 (dol == vl1l); // vl is now bound to 1lv
endsequence

Local variables can be passed into an instance of a named sequence to which ended is applied and accessed in
asimilar manner. For example

sequence seg2a;
int v1; c ##1 sub _seq2(vl) .ended ##1 (dol == v1); // vl is now bound to 1lv
endsequence

There are additional restrictions when passing local variables into an instance of a named sequence to which
ended isapplied:

1) Local variables can be passed in only as entire actual arguments, not as proper subexpressions of actual
arguments.

2) In the declaration of the named sequence, the formal argument to which the local variable is bound must
not be referenced before it is assigned.

The second restriction ismet by sub_seqg2 because the assignment 1v = data_in occurs before the reference
tolvindata out == 1v.

If alocal variable is assigned before being passed into an instance of a named sequence to which ended is
applied, then the restrictions prevent this assigned value from being visible within the named sequence. The
restrictions are important because the use of ended means that there is no guaranteed relationship between the
point in time at which the local variable is assigned outside the named sequence and the beginning of the
match of the instance.

A local variable that is passed in as actual argument to an instance of a named sequence to which ended is
applied will flow out of the application of ended to that instance provided both of the following conditions are
met:

1) Thelocal variable flows out of the end of the named sequence instance, as defined by the local variable
flow rules for sequences. (See below and Annex H.)

2) The application of ended to thisinstance is amaximal boolean expression. In other words, the application
of ended cannot have negation or any other expression operator applied to it.

Both conditions are satisfied by sub_seg2 and seg2a. Thus, in seg2a the valuein v1 in the comparison do1
== vl isthevaueassigned to 1v in sub_seqg2 by the assignment 1v = data_in. However, in

sequence seg2b;
int vl; c ##1 !sub _seqg2(vl) .ended ##1 (dol == v1); // vl unassigned

endsequence

the second condition is violated because of the negation applied to sub_seq2 (v1) .ended. Therefore, vi

226 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

does not flow out of the application of ended to thisinstance, and so thereferencetovi indol == viistoan
unassigned variable.

In asingle cycle, there can be multiple matches of a sequence instance to which ended is applied, and these
matches can have different valuations of the local variables. The multiple matches are treated semantically the
same way as matching both disjuncts of an or (see below). In other words, the thread eval uating the instance to
which ended is applied will fork to account for such distinct local variable valuations.

Note that when alocal variable is aformal argument of a sequence declaration, it isillegal to declare the vari-
able, as shown below.

sequence sub seqg3 (lv);

int 1lv; // illegal since 1lv is a formal argument

a ##1 l!la, lv = data_in ##1 !b[*0:$] ##1 b && (data_out == 1lv);
endsequence

There are special considerations when using local variables in sequences involving the branching operators or,
and, and intersect. The evaluation of a composite sequence constructed from one of these operators can be
thought of as forking two threads to evaluate the operand sequencesin parallel. A local variable may have been
assigned a value before the start of the evaluation of the composite sequence. Such alocal variable is said to
flow in to each of the operand sequences. The local variable may be assigned or reassigned in one or both of
the operand sequences. In general, there is no guarantee that eval uation of the two threads results in consistent
values for the local variable, or even that there is a consistent view of whether the local variable has been
assigned a value. Therefore, the values assigned to the local variable before and during the evaluation of the
composite sequence are not always alowed to be visible after the evaluation of the composite sequence.

In some cases, inconsistency in the view of the local variable’s value does not matter, while in others it does.
Precise conditions are given in Annex H to define static (i.e., compile-time computable) conditions under
which a sufficiently consistent view of the local variable's value after the evaluation of the composite sequence
is guaranteed. If these conditions are satisfied, then the local variable is said to flow out of the composite
sequence. An intuitive description of the conditions for local variable flow follows.

1) Variables assigned on parallel threads cannot be accessed in sibling threads. For example:

sequence s4;

int x;

(a ##1 b, (x = data) ##1 c) or (d ##1 (e==x)); // illegal
endsequence

2) Inthe case of or, alocal variable flows out of the composite sequence if and only if it flows out of each of
the operand sequences. If the local variable is not assigned before the start of the composite sequence and
it isassigned in only one of the operand sequences, then it does not flow out of the composite sequence.

3) Each thread for an operand of an or that matches its operand sequence continues as a separate thread,
carrying with it its own latest assignments to the local variables that flow out of the composite sequence.
These threads do not have to have consistent val uations for the local variables. For example:

sequence s5;

int x,vy;
((a ##1 b, x = data, y = datal ##1 c)
or (d ##1 ‘true, x = data ##0 (e==x))) ##1 (y==data2);
// illegal since y is not in the intersection
endsequence
sequence s6;
int x,vy;
((a ##1 b, x = data, y = datal ##1 c)
or (d ##1 ‘true, x = data ##0 (e==x))) ##1 (x==data2);
// legal since x is in the intersection
endsequence

Copyright 2004 Accellera. All rights reserved. 227

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

4) Inthecaseof and and intersect, alocal variable that flows out of at |east one operand shall flow out of
the composite sequence unlessit is blocked. A local variableis blocked from flowing out of the composite

sequenceif either:
a) Thelocal variableis assigned in and flows out of each operand of the composite sequence. Or,
b) Thelocal variableis blocked from flowing out of at least one of the operand sequences.
The value of alocal variable that flows out of the composite sequence is the latest assigned value. The
threads for the two operands are merged into one at compl etion of evaluation of the composite sequence.

sequence s7;

int x,y;
((a ##1 b, x = data, y = datal ##1 ¢)
and (d ##1 ‘true, x = data ##0 (e==x))) ##1 (x==data2);
// illegal since X is common to both threads
endsequence
sequence s8;
int x,y;
(a ##1 b, x = data, y = datal ##1 c)
and (d ##1 ‘true, x = data ##0 (e==x))) ##1 (y==data2);
// legal since y is in the difference
endsequence

17.9 Calling subroutines on match of a sequence

Tasks, task methods, void functions, void function methods, and system tasks can be called at the end of suc-
cessful match of asequence. The subroutine calls, like local variable assignments, appear in the comma-sepa-
rated list that follows the sequence. The subroutine calls are said to be attached to the sequence. The sequence
and the list that follows are enclosed in parentheses.

sequence_expr ::= // from Annex A.2.10
| (expression_or_dist {, sequence_match_item}) [boolean_abbrev]
| ('sequence_expr {, sequence_match_item}) [sequence_abbrev]

sequence_match _item ::=
operator_assignment
| inc_or_dec expression
| subroutine call

Syntax 17-13—subroutine call in sequence syntax (excerpt from Annex A)

For example,

sequence sl;
logic v, w;
(a, v = e) ##1
(b[->1], w = £, $display("b after a with v = %$h, w = %h\n", v, w));

endsequence

defines a sequence s1 that matches at the first occurrence of b strictly after an occurrence of a. At the match,
the system task $display is executed to write a message that announces the match and shows the values
assigned to the local variables v and w.

All subroutine calls attached to a sequence are executed at every successful match of the sequence. For each

228 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

successful match, the attached calls are executed in the order they appear in the list. The subroutines are sched-
uled in the Reactive region, like an action block.

Each argument of a subroutine call attached to a sequence must either be passed by value as an input or be
passed by reference (either ref or const ref; see Section 10.4.2). Actual argument expressions that are
passed by value use sampled values of the underlying variables and are consistent with the variable values
used to evaluate the sequence match.

Local variables can be passed into subroutine calls attached to a sequence. Any local variable that flows out of
the sequence or that is assigned in the list following the sequence, but before the subroutine call, can be used in
an actual argument expression for the call. If alocal variable appears in an actual argument expression, then
that argument must be passed by value.

17.10 System functions

Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

— $onehot (<expressions) returnstrueif only one bit of the expression is high.
— $onehot0 (<expressions) returnstrueif at most one bit of the expression is high.

— $isunknown (<expressions) returnstrueif any bit of the expressionis X or Z. Thisisequivaent to

A : 1
<expression> === 'bx.

All of the above system functions have a return type of bit. A return value of 1’ b1 indicatestrue, and areturn
value of 1’ bo indicates false.

Another useful function provided for the boolean expression is $countones, to count the number of 1sin abit
Vector expression.

Scountones (expression)

An X and Z value of abit is not counted towards the number of ones.

17.11 Declaring properties

A property defines a behavior of the design. A property can be used for verification as an assumption, a
checker, or a coverage specification. In order to use the behavior for verification, an assert, assume or
cover Statement must be used. A property declaration by itself does not produce any result.

A property can be declared in

— amodule

— aninterface a program
— aclocking block

— apackage

— acompilation-unit scope

To declare a property, the property construct is used as shown below:

Copyright 2004 Accellera. All rights reserved. 229

SystemVerilog 3.1a

Accellera
Extensionsto Verilog-2001

concurrent_assertion_item_declaration ::=
property declaration

property_declaration ::=
property property_identifier [([list_of formals])];
{ assertion_variable_declaration }
property _spec;
endproperty [: property_identifier]
list_ of formals::=formal_list_item{ , forma _list item}
property _spec ::=
[clocking_event] [disableiff (expression_or_dist)] property_expr
property_expr ::=
sequence_expr
| (property_expr)
| not property_expr
| property_expr or property_expr
| property_expr and property_expr
| sequence_expr |-> property_expr
| sequence_expr |=> property_expr
| if (expression_or_dist) property_expr [€lse property_expr]
| property_instance
| clocking_event property _expr
assertion_variable declaration ::=
data typelist_of variable identifiers;
property_instance::=
ps_property_identifier [([actual_arg_list])]

/I from Annex A.2.10

Syntax 17-14—property construct syntax (excerpt from Annex A)

A property is declared with optional formal arguments, as in a sequence declaration. When a property is
instantiated, actual arguments can be passed to the property. The property gets expanded with the actual argu-
ments by replacing the formal arguments with the actual arguments. Semantic checks are performed to ensure

that the expanded property with the actual argumentsis legal.

The result of property evaluation is either true or false. There are seven kinds of property: sequence, negation,

digunction, conjunction, if...else, implication, and instantiation.

1) A property that is a sequence evaluatesto trueif and only if there is a non-empty match of the sequence. A
sequence that admits an empty match is not allowed as a property. Since there is a match if and only if
there is a first match, evaluation of such a property is the same as implicitly transforming its
sequence_expr to first match (Sequence_expr). As soon as a match of sequence_expr is determined,
the evaluation of the property is considered to be true, and no other matches are required for that

evaluation attempt.

2) A property isanegationif it has the form

not property expr

For each evaluation attempt of the property, thereis an evaluation attempt of property_expr. The keyword
not States that the evaluation of the property returns the opposite of the evaluation of the underlying
property_expr. Thus, if property_expr evaluates to true, then not property_expr evaluates to false, and if

property_expr evaluates to false, then not property_expr evaluatesto true.

230 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

3) A property isadigunction if it hasthe form
property exprl or property expr2
The property evaluates to true if and only if at least one of property_exprl and property_expr2 evaluates
to true.
4) A property isaconjunction if it has the form

property exprl and property expr2
The property evaluates to true if and only if both property _exprl and property_expr2 evaluate to true.

5) A property isan if...else if it has either the form

if (expression or dist) property exprl

or the form

if (expression or dist) property exprl else property expr2

A property of the first form evaluates to true if and only if either expression_or_dist evaluates to false or
property_exprl evaluates to true. A property of the second form evaluates to true if and only if either
expression_or_dist evaluatesto true and property_exprl evaluatesto true or expression_or_dist evaluates
to false and property_expr2 evaluatesto true.

6) A property isanimplication if it has either the form

sequence expr |-> property expr

or the form

seqguence_expr |=> property expr

The meaning of implicationsis discussed in 17.11.1.

7) Aninstance of a named property can be used as a property_expr or property_spec. In general, the instance
islegal provided the body property_spec of the named property can be substituted in place of the instance,
with actual arguments substituted for formal arguments, and result in a legal property _expr or
property_spec, ignoring local variable declarations. Thus, for example, if an instance of a named property
is used as a property_expr operand for any property-building operator, then the named property must not
have a disable iff clause. Similarly, clock events in a named property must conform to the rules of
multiple clock support when the property is instantiated in a property_expr or property_spec that also
involves other clock events.

The following table lists the property operators from highest to lowest precedence and shows the associativity
of the non-unary operators.

Table 17-2: Property operator precedence and associativity

SystemVerilog property operators Associativity
not ----
and left
or left
if..else right
[-> |=> right

Copyright 2004 Accellera. All rights reserved. 231

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

A disable iff clause can be attached to a property_expr to yield a property_spec
disable iff (expression or dist) property expr

The expression of the disable i££ iscalled the reset expression. The disable iff clause allows asynchro-
nous resets to be specified. For an evaluation of the property_spec, there is an evaluation of the underlying
property_expr. If prior to the completion of that evaluation the reset expression becomes true, then the overall
evaluation of the property_spec is true. Otherwise, the evaluation of the property spec is the same as that of
the property_expr. The reset expression is tested independently for different evaluation attempts of the
property_spec. Nesting of disable iff clauses, explicitly or through property instantiations, is not allowed.

17.11.1 Implication

The implication construct specifies that the checking of a property is performed conditionally on the match of
a sequential antecedent.

property_expr ::= [/l from Annex A.2.10

| sequence_expr |-> property_expr
| sequence_expr |=> property_expr

Syntax 17-15—implication syntax (excerpt from Annex A)

This clause is used to precondition monitoring of a property expression and is alowed at the property level.
The result of the implication is either true or false. The left-hand side operand sequence_expr is called the
antecedent, while the right-hand side operand property_expr is called the consequent.

The following points should be noted for | - > implication:

— From a given start point, the antecedent sequence_expr can have zero, one, or more than one successful
match.

— If thereis no match of the antecedent sequence_expr from a given start point, then evaluation of the impli-
cation from that start point succeeds vacuously and returns true.

— For each successful match of antecedent sequence_expr, the consequent property_expr is separately evalu-
ated. The end point of the match of the antecedent sequence_expr is the start point of the evaluation of the
conseguent property_expr.

— From a given start point, evaluation of the implication succeeds and returns true if and only if for every
match of the antecedent sequence expr beginning at the start point, the evaluation of the consequent
property_expr beginning at the endpoint of the match succeeds and returns true.

Two forms of implication are provided: overlapped using operator | ->, and non-overlapped using operator
| =>. For overlapped implication, if thereis amatch for the antecedent sequence_expr, then the end point of the
match is the start point of the evaluation of the consequent property _expr. For non-overlapped implication, the
start point of the evaluation of the consequent property_expr isthe clock tick after the end point of the match.
Therefore:

sequence_expr |=> property expr
isequivalent to:

sequence expr ##1 ‘true |—> property expr

The use of implication when multi-clock sequences and properties are involved is explained in Section 17.12.

The following example illustrates a bus operation for data transfer from a master to a target device. When the

232 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

bus enters a data transfer phase, multiple data phases can occur to transfer a block of data. During the data
transfer phase, a data phase completes on any rising clock edge on which irdy is asserted and either trdy or
stop is asserted. Note that an asserted signal here implies a value of low. The end of a data phase can be
expressed as:

property data end;

@ (posedge mclk)

data phase |-> ((irdy==0) && ($fell(trdy) || S$fell(stop))) ;
endproperty

Each time adata phase istrue, amatch for data_phase isrecognized. The attempt at clock tick 6 isillustrated

in Figure 17-13. The values shown for the signals are the sampled values with respect to the clock. At clock
tick 6, data_end istrue because stop gets asserted while irdy is asserted.

mclk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

data_phase

irdy

trdy (high)

stop

data_end A

Figure 17-13 — Conditional sequence matching

In another example, data_end_exp isused to ensurethat £rame isde-asserted (value high) within 2 clock
ticksafter data_end_exp occurs. Further, it isalso required that 1 rdy is de-asserted (value high) one clock
tick after frame is de-asserted.

A property written to express this condition is shown below.

‘define data_end exp (data_phase && ((irdy==0)&&($fell (trdy) ||$fell(stop))))
property data end rulel;

@ (posedge mclk)

‘data_end exp |-> ##[1:2] Srose(frame) ##1 Srose(irdy);
endproperty

property data_end rulei first evaluates data end exp at every clock tick to test if its value is true. If the
valueisfalse, then that particular attempt to evaluate data_end ruleil isconsidered true. Otherwise, the fol-
lowing sequence is evaluated. The sequence:

##[1:2] Srose(frame) ##1 Srose (irdy)

specifies looking for the rising edge of £rame within two clock ticksin the future. After frame toggles high,
irdy must also toggle high after one clock tick. Thisisillustrated in Figure 17-14 for the evaluation attempt at
clock tick 6. *data_end exp isacknowledged at clock tick 6. Next, £rame toggles high at clock tick 7. Since
this falls within the timing constraint imposed by [1:2], it satisfies the sequence and continues to evaluate
further. At clock tick 8, irdy is evaluated. Signal irdy transitions to high at clock tick 8, matching the
sequence specification completely for the attempt that began at clock tick 6.

Copyright 2004 Accellera. All rights reserved. 233

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

mclk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

data_phase

|
:
. |
irdy 1
1
trdy (high) :

stop

frame

‘data_end_exp

.1___>_-__

data_end_rulel

Figure 17-14 — Conditional sequences

Generally, assertions are associated with preconditions so that the checking is performed only under certain
specified conditions. As seen from the previous example, the | - > operator provides this capability to specify
preconditions with sequences that must be satisfied before evaluating their consequent properties. The next
example modifies the preceding example to see the effect on the results of the assertion by removing the pre-
condition for the consequent. This is shown below, and illustrated in Figure 17-15.

property data end rule2;

@ (posedge mclk) ##[1:2] Srose(frame) ##1 Srose(irdy) ;
endproperty

mclk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

data_phase

irdy

trdy (high)

stop

frame

N

" A Y Y YYYY

R

data_end A
-

data_end_rule2 v v v v;[l:ﬂ_

Figure 17-15 — Results without the condition

4= ———

rl—=1— =

The property is evaluated at every clock tick. For the evaluation at clock tick 1, therising edge of signal frame

234 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

does not occur at clock tick 1 or 2, so the property fails at clock tick 1. Similarly, thereis afailure at clock ticks
2, 3, and 4. For attempts starting at clock ticks 5 and 6, the rising edge of signal frame at clock tick 7 alows
checking further. At clock tick 8, the sequences complete according to the specification, resulting in a match
for attempts starting at 5 and 6. All later attempts to match the sequence fail because $rose (frame) does
not occur again.

Figure 17-15 shows that removing the precondition of checking *data_end exp from the assertion causes
failures that are not relevant to the verification objective. It is important from the validation standpoint to
determine these preconditions and use them to filter out inappropriate or extraneous situations.
An exampl e of implication where the antecedent is a sequence follows:

(a ##1 b ##1 c) |-> (4 ##1 e)

If the sequence (a ##1 b ##1 c) matches, then the sequence (d ##1 e) must aso match. On the other
hand, if the sequence (a ##1 b ##1 c) doesnot match, then theresult istrue.

Another example of implication is:

property plé6;
(write _en & data valid) ##0

(write en && (retire address([0:4]==addr)) [*2] |—>
##[3:8] write en && !data valid &&(write address[0:4]==addr) ;
endproperty

This property can be coded alternatively as a nested implication:

property plé nested;

(write en & data_valid) |->
(write en && (retire address[0:4]==addr)) [*2] |->
##[3:8] write en && !data valid && (write address[0:4]==addr) ;
endproperty

Multi-clock sequence implication is explained in Section 17.12.

17.11.2 Property examples
The following examplesillustrate the property forms.

property rulel;
@ (posedge clk) a |-> b ##1 c ##1 4;
endproperty
property rule2;
@(clkev) disable iff (foo) a |-> not(b ##1 c ##1 4);
endproperty

Property rule2 negatesthe sequence (b ##1 c ##1 d) in the consequent of the implication.
clkev specifiesthe clock for the property .

property rule3;
@ (posedge clk) al[*2] |-> ((##[1:3] c) or (4 |=> e));
endproperty

Property rule3 saysthat if a holds and a also held last cycle, then either ¢ must hold at some point 1 to three
cycles after the current cycle, or, if 4 holdsin the current cycle, then e must hold one cycle later.

property rule4;

@ (posedge clk) al[*2] |-> ((##[1:3] c) and (d |=> e));
endproperty

Copyright 2004 Accellera. All rights reserved. 235

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Property rule4 saysthat if a holds and a also held last cycle, then ¢ must hold at some point 1 to three cycles
after the current cycle, and if d holdsin the current cycle, then e must hold one cycle later.

property rules5;
@ (posedge clk)

a ##1 (b || <) [->1] |->
if (b)
(##1 4 |-> e)
else // c
£
endproperty

Property rules has a followed by the first match of either b or ¢ as its antecedent. The consequent uses
if...else to split cases on which of b or c is matched first.

property ruleé (x,V) ;
##1 x |-> y;
endproperty
property ruleb5a;
@ (posedge clk)

a ##1 (b || <) [->1] |->
if (b)
ruleé6 (d, e)
else // c
£
endproperty

Property rulesa isequivalent to rules, but it uses an instance of ruleé asa property expression.

A property can optionally specify an event control for the clock. The clock derivation and resolution rules are
described in Section 17.14.

A named property can be instantiated by referencing its name. A hierarchical name can be used, consistent
with the SystemVerilog naming conventions. Like sequence declarations, variables used within a property that
are not formal arguments to the property are resolved hierarchically from the scope in which the property is
declared.

Properties that use more than one clock are described in Section 17.12

17.11.3 Recursive properties

SystemVerilog allows recursive properties. A named property is recursive if its declaration involves an instan-
tiation of itself. Recursion provides a flexible framework for coding properties to serve as ongoing assump-
tions, checkers, or coverage monitors.

For example,

property prop always (p) ;
p and (1'bl |=> prop_always(p));
endproperty

isarecursive property that says that the formal argument property p must hold at every cycle. This exampleis
useful if the ongoing requirement that property p hold applies after a complicated triggering condition encoded
in sequence s:

property pl(s,p);

s |=> prop_always (p) ;
endproperty

236 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

As another example, the recursive property

property prop weak until(p,q);
g or (p and (1'’bl |=> prop weak until(p,q)));
endproperty

says that formal argument property p must hold at every cycle up to but not including the first cycle at which
formal argument property g holds. Formal argument property q is not required ever to hold, though. This
exampleisuseful if p must hold at every cycle after acomplicated triggering condition encoded in sequencess,
but the requirement on pislifted by q:

property p2(s,p,q) ;
s |=> prop weak until(p,q);
endproperty

More generally, several properties can be mutually recursive. For example

property check phasel;

sl |-> (phasel prop and (1’bl |=> check_phase2));
endproperty
property check phase2;

s2 |-> (phase2 prop and (1'bl |=> check phasel));
endproperty

There are three restrictions on recursive property declarations.
RESTRICTION 1: The negation operator not cannot be applied to any property expression that instantiates a
recursive property. In particular, the negation of a recursive property cannot be asserted or used in defining
another property.
Here are examples of illegal property declarations that violate Restriction 1:
property illegal recursion 1(p);
not prop always (not p);
endproperty
property illegal recursion 2(p);
p and (1'bl |:> not illegal recursion 2(p)) ;

endproperty

RESTRICTION 2: The operator disable iff cannot be used in the declaration of a recursive property. This
restriction is consistent with the restriction that disable i££ cannot be nested.

Here isan example of anillegal property declaration that violates Restriction 2:
property illegal recursion 3(p);
disable iff (b)
p and (1'bl |:> illegal recursion 3 (p));
endproperty
Theintent of illegal recursion_3 can bewritten legally as
property legal 3(p);
disable iff (b) prop always(p);
endproperty

since legal 3 isnot arecursive property.

RESTRICTION 3: If p is arecursive property, then, in the declaration of p, every instance of p must occur

Copyright 2004 Accellera. All rights reserved. 237

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001

after apositive advance in time. In the case of mutually recursive properties, al recursive instances must occur
after positive advancesin time.

Hereisan example of anillegal property declaration that violates Restriction 3:

property illegal recursion 4 (p);
p and (1'bl |—> illegal recursion 4 (p));
endproperty

If thisform werelegal, the recursion would be stuck in time, checking p over and over again at the same cycle.

Recursive properties can represent complicated requirements, such as those associated with varying numbers
of data beats, out-of-order completions, retries, etc. Here is an example of using a recursive property to check
complicated conditions of this kind.

EXAMPLE: Suppose that write data must be checked according to the following conditions:

— Acknowledgment of a write request is indicated by the signad write request together with

write request_ack. When a write request is acknowledged, it gets a 4-bit tag, indicated by signal
write regest ack tag. The tag is used to distinguish data beats for multiple write transactions in
flight at the same time.

It is understood that distinct write transactions in flight at the same time must be given distinct tags. For
simplicity, this condition is not a part of what is checked in this example.

Each write transaction can have between 1 and 16 data beats, and each data beat is 8 bits. Thereisamodel
of the expected write data that is available at acknowledgment of a write request. The model is a 128-hit
vector. The most significant group of 8 hits represents the expected data for the first beat, the next group of
8 hits represents the expected data for the second beat (if there is a second beat), and so forth.

Data transfer for a write transaction occurs after acknowledgment of the write request and, barring retry,
ends with the last data beat. The data beats for a single write transaction occur in order.

A data beat isindicated by the data_valid signa together with the signal data valid tag to deter-
mine the relevant write transaction. The signal data isvalid withdata valid and carriesthe datafor that
beat. The data for each beat must be correct according to the model of the expected write data.

The last data beat is indicated by signal last data valid together with data valid and
data_valid tag. For simplicity, this example does not represent the number of data beats and does not
check that 1ast _data validissignaled at the correct beat.

At any time after acknowledgement of the write request, but not later than the cycle after the last data beat,
a write transaction can be forced to retry. Retry is indicated by the signal retry together with signal
retry tag toidentify the relevant write transaction. If awrite transaction is forced to retry, then its cur-
rent data transfer is aborted and the entire data transfer must be repeated. The transaction does not re-
request and its tag does not change.

Thereis no limit on the number of times awrite transaction can be forced to retry.

A write transaction completes the cycle after the last data beat provided it is not forced to retry in that
cycle.

Here is code to check these conditions:

property check write;

logic [0:127] expected data; // local variable to sample model data
logic [3:0] tag; // local variable to sample tag

disable iff (reset)
(

238 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

write request && write request_ ack,
expected data = model data,
tag = write request ack tag
)
|=>
check write data beat (expected data, tag, 4’hoO);

endproperty

property check write data beat
(
expected data, // [0:127]
tag, // [3:0]
i // 13:0]
)

first match

(

##[0:5]
(
(data_valid && (data valid tag == tag))
||
(retry && (retry tag == tag))
)
)
| ->
(
(
(data_valid && (data valid tag == tag))
| ->
(data == expected data[i*8+:8])
)
and
(
if (retry && (retry tag == tag))

(
1'bl |=> check write data beat (tag, expected data, 4'h0)
)
else if (!last data valid)
(
1’bl |=> check write data beat(tag, expected data, i+4’hl)
)
else
(
##1 (retry && (retry tag == tag))
|=>
check write data beat (tag, expected data, 4'ho0)

)i
endproperty
17.11.4 Finite-length versus infinite-length behavior
The formal semanticsin Annex H defines whether a given property holds on a given behavior. How the out-

come of this evaluation relates to the design depends on the behavior that was analyzed. In dynamic verifica-
tion, only behaviors that are finite in length are considered. In such a case, SystemVerilog defines four levels

Copyright 2004 Accellera. All rights reserved. 239

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

of satisfaction of a property:

Holds strongly:

— no bad states have been seen
— all future obligations have been met

— the property will hold on any extension of the path

Holds (but does not hold strongly):
— no bad states have been seen

— all future obligations have been met

— the property may or may not hold on a given extension of the path

Pending:
— o bad states have been seen
— future obligations have not been met

— the property may or may not hold on a given extension of the path
Fails:
— abad state has been seen
— future obligations may or may not have been met
— the property will not hold on any extension of the path
17.11.5 Non-degeneracy
It is possible to define sequences that can never be matched. For example:
(1'bl) intersect(1’bl ##1 1'bl)
It isalso possible to define sequences that admit only empty matches. For example:
1'b1[*0]
A sequence that admits no match or that admits only empty matches is called degenerate. A sequence that
admits at least one non-empty match is called non-degenerate. A more precise definition of non-degeneracy is

givenin Annex H.

The following restrictions apply:

1) Any sequence that is used as a property must be non-degenerate and must not admit any empty match.

2) Any sequence that is used as the antecedent of an overlapping implication (| ->) must be non-degenerate.

3) Any sequencethat is used as the antecedent of a non-overlapping implication (| =>) must admit at least one
match. Such a sequence can admit only empty matches.

The reason for these restrictions is that the use of degenerate sequences the forbidden ways results in counter-
intuitive property semantics, especially when the property is combined with a disable iff clause.

17.12 Multiple clock support

Multiple clock sequences and properties can be specified using the following syntax.

240 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

17.12.1 Multiply-clocked sequences

Multiply-clocked sequences are built by concatenating singly-clocked subsequences using the single-delay
concatenation operator ##1. This operator is non-overlapping and synchronizes between the clocks of the two
sequences. The single delay indicated by ##1 is understood to be from the endpoint of the first sequence,
which occurs at atick of the first clock, to the nearest strictly subsequent tick of the second clock, where the
second sequence begins.

For example, consider

@ (posedge clk0) sig0 ##1 @ (posedge clkl) sigl

A match of this sequence starts with amatch of sigo at posedge c1ko. Then ##1 moves the time to the near-
est strictly subsequent posedge c1k1, and the match of the sequence ends at that point with amatch of sigi. If
clko and c1k1 are not identical, then the clocking event for the sequence changes after ##1. If c1ko and

clk1 areidentical, then the clocking event does not change after ##1 and the above sequence is equivalent to
the singly-clocked sequence

@ (posedge clk0) sig0 ##1 sigl
When concatenating differently-clocked sequences, the maximal singly-clocked subsequences are required to
admit only non-empty matches. Thus, if s1, s2 are sequence expressions with no clocking events, then the
multiply-clocked sequence

@ (posedge clkl) sl ##1 @(posedge clk2) s2
is legal only if neither s1 nor s2 can match the empty word. The clocking event posedge cl1k1 applies
throughout the match of s1, while the clocking event posedge c1k2 applies throughout the match of s2. Since
the match of s1 is non-empty, there is an end point of this match at posedge c1k1. The ##1 synchronizes
between this end point and the first occurrence of posedge c1k2 strictly after it. That occurrence of posedge
clk2 isthe start point of the match of s2.
The restriction that maximal singly-clocked subsequences not match the empty word ensures that any multi-
ply-clocked sequence has well-defined starting and ending clocking events and well-defined clock changes. If
clk1 and c1k2 are not identical, then the following sequence

@ (posedge clk0) sig0 ##1 @(posedge clkl) sigl[*0:1]

isillegal because of the possibility of an empty match of sig1 [*0:1], which would make ambiguous whether
the ending clocking event is posedge c1ko or posedge c1k1.

Differently-clocked or multiply-clocked sequence operands cannot be combined with any sequence operators
other than ##1. For example, if c1k1 and c1k2 are not identical, then the following areillegal :

@ (posedge clkl) sl ##0 @(posedge clk2) s2
@ (posedge clkl) sl ##2 @(posedge clk2) s2

@ (posedge clkl) sl intersect @ (posedge clk2) s2

17.12.2 Multiply-clocked properties

Asinthe case of singly-clocked properties, the result of evaluating a multiply-clocked property is either true or
false. Multiply-clocked properties can be formed in a number of ways.

Multiply-clocked sequences are themsel ves multiply-clocked properties. For example,

@ (posedge clk0) sig0 ##1 @ (posedge clkl) sigl

Copyright 2004 Accellera. All rights reserved. 241

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

isamultiply-clocked property. If amultiply-clocked sequenceis evaluated as a property starting at some point,
the evaluation returns true if and only if there is a match of the multiply-clocked sequence beginning at that
point.

The boolean property operators (not, and, or) can be used freely to combine singly- and multiply-clocked
properties. The meanings of the boolean property operators are the usual ones, just as in the case of singly-
clocked properties. For example,

(@ (posedge clk0) sig0) and (@ (posedge clkl) sigl)

is a multiply-clocked property, but it is not a multiply-clocked sequence. This property evauates to true at a
point if and only if the two sequences

@ (posedge clk0) sigO0
and

@ (posedge clkl) sigl
both have matches beginning at the point.
The non-overlapping implication operator |=> can be used freely to create a multiply-clocked property from an
antecedent sequence and a consequent property that are differently- or multiply-clocked. The meaning of mul-
tiply-clocked non-overlapping implication is similar to that of singly-clocked non-overlapping implication.
For example, if s0, s1 are sequences with no clocking event, then in

@ (posedge clk0) sO |:> @ (posedge clkl) sl

[=> synchronizes between posedge c1k0 and posedge c1k1. Starting at the point at which the implication is
being evaluated, for each match of so clocked by c1xko, time is advanced from the end point of the match to
the nearest strictly future occurrence of posedge c1k1, and from that point there must exist a match of s1
clocked by c1ki.

The non-overlapping implication operator |=> can synchronize between the ending clock event of its anteced-
ent and several leading clock events for subproperties of its consequent. For example, in

@ (posedge clk0) sO |:> (@ (posedge clkl) sl) and (@ (posedge clk2) s2)
[=> synchronizes between posedge c1k0 and both posedge c1k1 and posedge c1k2.

Since synchronization between distinct clocks always requires strict advance of time, the two property build-
ing operators that require special care with multiple clocks are the overlapping implication |-> and if/
if...else.

Since |-> overlaps the end of its antecedent with the beginning of its consequent, the clock for the end of the
antecedent must be the same as the clock for the beginning of the consequent. For example, if c1ko and c1k1
arenot identical and so, s1, s2 are sequences with no clocking events, then

@ (posedge clk0) s0 |-> @(posedge clkl) sl ##1 @(posedge clk2) s2
isillegal, but

@ (posedge clk0) s0 |-> @(posedge clk0) sl ##1 @(posedge clk2) s2
islegal.
The if/if...else operatorsoverlap the test of the boolean condition with the beginning of the i £ clause prop-
erty and, if present, the else clause property. Therefore, whenever using if or if...else, the if and else

clause properties must begin on the same clock as the test of the boolean condition. For example, if c1x0 and
clk1 arenotidentical and s0, s1, s2 are sequences with no clocking events, then

242 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

@ (posedge clk0) if (b) @(posedge clk0) sl
islegal, but
@ (posedge clk0) if (b) @(posedge clk0) sl else @(posedge clkl) s2

isillegal because the else clause property begins on a different clock than the i £ condition.

17.12.3 Clock flow

Throughout this subsection, ¢, d denote clocking event expressions and v, w, X, Y, z denote sequences with no
clocking events.

Clock flow allows the scope of a clocking event to extend in a natural way through various parts of multiply-
clocked sequences and properties and reduces the number of places at which the same clocking event must be
specified.
Intuitively, clock flow provides that in a multiply-clocked sequence or property the scope of a clocking event
flows left-to-right across linear operators (e.g., repetition, concatenation, negation, implication) and distributes
to the operands of branching operators (e.g., conjunction, digunction, intersection, if...else) until it is
replaced by a new clocking event.
For example,

@(c) x |=> @(c) y ##1 e(d) z
can be written more simply as

@(c) x |=> y ##1 @(d) =z

because clock ¢ is understood to flow across |=>.

Clock flow eliminates the need to write clocking events in positions where the clock is not allowed to change.
For example,

@(c) x |-> @(c) y ##1 @(d) =z
can be written as
@(c) x |-> y ##1 e(d) =z
to reinforce the restriction that the clock not change across |->. Similarly,
@(c) if (b) @(c) w ##1 @(d) x else @(c) y ##1 @(d) =z
can be written as
@(c) if (b) w ##1 @(d) x else y ##1 @(d) =z

to reinforce the restriction that the clock not change from the boolean condition b to the beginnings of the i £
and else clause properties.

Clock flow also makes the adjointness rel ationships between concatenation and implication clean for multiply-
clocked properties:

@(c) x ##1 y |=> e@(d) =z

isequivalent to

Copyright 2004 Accellera. All rights reserved. 243

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

@(c) x |=>y |=> @(d) =z
and

@(c) x ##0 y |=> @(d) =z
isequivalent to

@(c) x |-> y |=> @(d) =z
The scope of aclocking event flows into parenthesized subexpressions and, if the subexpression is a sequence,
also flows left-to-right across the parenthesized subexpression. However, the scope of a clocking event does
not flow out of enclosing parentheses.
For example, in

@(c) w ##l (x ##1 e(d) y) |=> z
w, X, zare clocked at cand y is clocked at d. Clock ¢ flows across ##1, across the parenthesized subseguence (x
##1 @(d) y), and across |=>. Clock c also flows into the parenthesized subsequence, but it does not flow
through @(d). Clock d does not flow out of its enclosing parentheses.
As another example, in

@(c) v |=> (w ##1 @(d) x) and (y ##1 z2)
v, W, y, zare clocked at ¢ and x is clocked at d. Clock c flows across |=>, distributes to both operands of the and
(which isaproperty conjunction due to the multiple clocking), and flows into each of the parenthesized subex-
pressions. Within (w ##1 @(d) X), ¢ flows across ##1 but does not flow through @(d). Clock d does not flow
out of its enclosing parentheses. Within (y ##1 2), ¢ flows across ##1.
Similarly, the scope of a clocking event flows into an instance of a named sequence or property, and, if the
instance is a sequence, also flows left-to-right across the instance. However, a clocking event in the declaration
of a sequence or property does not flow out of an instance of that sequence or property.
Note that juxtaposing two clocking events nullifies the first of them:

@(d) e@(c) x
isequivalent to

@(c) x

because the flow of clock d isimmediately overridden by clock c.

17.12.4 Examples
The following are examples of multiple-clock specifications:

sequence sl;

@ (posedge clkl) a ##1 b; // single clock sequence
endsequence
sequence s2;

@ (posedge clk2) c ##1 d; // single clock sequence
endsequence

1) multiple-clock sequence

sequence mult s;
@ (posedge clk) a ##1 @(posedge clkl) sl ##1 @(posedge clk2) s2;

244 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

endsequence
2) property with amultiple-clock sequence

property mult pl;
@ (posedge clk) a ##1 @(posedge clkl) sl ##1 @(posedge clk2) s2;
endproperty

3) property with anamed multiple-clock sequence

property mult p2;
mult s;
endproperty

4) property with multiple-clock implication

property mult p3;
@ (posedge clk) a ##l @(posedge clkl) sl |=> @(posedge clk2) s2;
endproperty

5) property with named sequences at different clocks. In this case, if s1 contains a clock, then it must be
identical to (posedge c1k1).Similarly, if s2 containsaclock, it must beidentical to (posedge clk2).

property mult p5
@ (posedge clkl) sl |:> @ (posedge clk2) s2;
endproperty

6) property with implication, where antecedent and consequent are named multi-clocked sequences

property mult pé6;
mult s |=> mult_s;
endproperty

7) property using clock flow and overlapped implication:

property mult p7;
@ (posedge clk) a ##1 Db |—> c ##1 @(posedge clkl) d;
endproperty

Here, a, b, and c are clocked at posedge c1k.
8) property using clock flow and if...else:

property mult p8;
@ (posedge clk) a ##1 b |->

if (c)
(1 |=> @(posedge clkl) d)
else
e ##1 @(posedge clk2) f ;
endproperty

Here, a, b, ¢, and e are clocked at posedge c1k.

17.12.5 Detecting and using endpoint of a sequence in multi-clock context

To detect the end point of a sequence when the clock of the source sequence is different than the destination
sequence, method matched on the source sequence is used. The end point of a sequence is reached whenever
there isamatch on its expression. The occurrence of the end point can be tested in any sequence expression by
using the method ended when the clocks of the source and destination sequences are the same, while method
matched isused when the clocks are different.

The syntax of the matched method is:

Copyright 2004 Accellera. All rights reserved. 245

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

sequence_ instance.matched

matched isamethod on a sequence which return true or false. Unlike ended, matched uses synchronization
between the two clocks, by storing the result of the source sequence match until the arrival of the first destina-
tion clock tick after the match. When method matched is applied, it tests whether the source sequence has
reached the end point at that particular point in time. The result of matched does not depend upon the starting
point of the source sequence.

Like ended, matched can be used on sequences that have formal arguments.
An example is shown below:

sequence el(a,b,c);
@ (posedge clk) Srose(a) ##1 b ##1 c ;
endsequence
sequence e2;
@ (posedge sysclk) reset ##1 inst ##1 el (ready,procl,proc2) .matched [->1]
##1 branch back;
endsequence

In this example, source sequence e1 is evaluated at clock c1k, while the destination sequence e2 is evaluated
at clock sysclk. In e2, the end point of the instance e1 (ready, proci, proc2) istested to occur sometime
after the occurrence of inst. Notice that method matched only tests for the end point of
el (ready, procl,proc2) and hasno bearing on the starting point of e1 (ready, procl, proc2).

Local variables can be passed into an instance of a named sequence to which matched is applied. The same
restrictions apply as in the case of ended. Values of local variables sampled in an instance of a named
sequence to which matched is applied will flow out under the same conditions as for ended. See
Section 17.8.

Aswith ended, a sequence instance to which matched is applied can have multiple matchesin asingle cycle
of the destination sequence clock. The multiple matches are treated semantically the same way as matching
both disuncts of an or. In other words, the thread eval uating the destination sequence will fork to account for
such distinct local variable valuations.

17.13 Concurrent assertions

A property on its own is never evaluated for checking an expression. It must be used within a verification
statement for this to occur. A verification statement states the verification function to be performed on the
property. The statement can be one of the following:

— assert to specify the property as a checker to ensure that the property holds for the design
— assume to specify the property as an assumption for the environment

— cover to monitor the property evaluation for coverage

A concurrent assertion statement can be specified in:
— an awaysblock or initial block as a statement, wherever these blocks can appear
— amodule
— aninterface

— aprogram

246 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

procedural_assertion_statement ::= // from Annex A.6.10
concurrent_assertion_statement
| immediate assert statement

concurrent_assertion_item ::= // from Annex A.2.10
[block_identifier :] concurrent_assertion_statement
concurrent_assertion_statement ::=
assert_property _statement
| assume_property statement
| cover_property_statement
assert_property _statement::=
assert property (property_spec) action_block
assume_property _statement::=
assume property (property_spec) ;
cover_property_statement::=
cover property (property_spec) statement_or_null

Syntax 17-16—Concurrent assert construct syntax (excerpt from Annex A)

The assert, assume Of cover Statements can be referenced by their optional name. A hierarchical name can
be used consistent with the SystemVerilog naming conventions. When a name is not provided, a tool shall
assign a name to the statement for the purpose of reporting. Assertion control system tasks are described in
Section 23.9.

17.13.1 assert statement

The assert Statement is used to enforce a property as a checker. When the property for the assert state-
ment is evaluated to be true, the pass statements of the action block are executed. Otherwise, the fail state-
ments of the action_block are executed. For example,

property abc(a,b,c);
disable iff (a==2) not @clk (b ##1 c);
endproperty
env_prop: assert property (abc(rst,inl,in2)) pass stat else fail stat;

When no action is needed, a null statement (i.e.;) is specified. If no statement is specified for else, then
$error isused as the statement when the assertion fails.

The action_block shall not include any concurrent assert, assume, OF cover Statement. The action_block,
however, can contain immediate assertion statements.

Note: The pass and fail statements are executed in the Reactive region. The regions of execution are explained
in the scheduling semantics section, Section 14.

17.13.2 assume statement

The purpose of the assume statement is to allow properties to be considered as assumptions for formal analy-
sisaswell asfor dynamic simulation tools. When a property is assumed, the tools constrain the environment so
that the property holds.

For formal analysis, thereis no obligation to verify that the assumed properties hold. An assumed property can
be considered as a hypothesis to prove the asserted properties.

For simulation, the environment must be constrained such that the properties that are assumed shall hold. Like
an assert property, an assumed property must be checked and reported if it fails to hold. There is no require-

Copyright 2004 Accellera. All rights reserved. 247

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

ment on the tool s to report successes of the assumed properties.

Additionally, for random simulation, biasing on the inputs provides away to make random choices. An expres-
sion can be associated with biasing as shown below

expression dist { dist list } ; // from Annex A.1.9
Distribution sets and the dist operator are explained in Section 12.4.4.

The biasing feature is only useful when properties are considered as assumptions to drive random simulation.
When a property with biasing is used in an assertion or coverage, the dist operator is equivalent to inside oper-
ator, and the weight specification isignored. For example,

al:assume property @ (posedge clk) reqg dist {0:=40, 1:=60} ;
property proto

@ (posedge clk) req |-> reql[*1:$] ##0 ack;
endproperty

Thisis equivalent to:

al assertion:assert property req inside {0, 1} ;
property proto_assertion

@ (posedge clk) req |-> reg[*1:$] ##0 ack;
endproperty

In the above example, signal req is specified with distribution in assumption a1, and is converted to an equiv-
alent assertion a1_assertion.

It should be noted that the properties that are assumed must hold in the same way with or without biasing.
When using an assume statement for random simulation, the biasing simply provides a means to select values
of free variables, according to the specified weights, when there is a choice of selection at a particular time.

Consider an example specifying a simple synchronous request - acknowledge protocol, where variable req
can beraised at any time and must stay asserted until ack is asserted. In the next clock cycle both req and ack
must be de-asserted.

Properties governing req are:

property pril;

@ (posedge clk) !reset n |-> !req; //when reset n is asserted (0),keep req O
endproperty
property pr2;

@ (posedge clk) ack |=> !req; // one cycle after ack, req must be de-asserted
endproperty
property pr3;

@ (posedge clk) req |-> reql[*1:$] ##0 ack; // hold req asserted until

// and including ack asserted

endproperty

Properties governing ack are:

property pal;
@ (posedge clk) !reset n || !req |-> lack;
endproperty
property paz2;
@ (posedge clk) ack |=> lack;
endproperty

When verifying the behavior of a protocol controller which has to respond to requests on req, assertions

248 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

assert_reql and assert_reg2 should be proven while assuming that statements a1, assume acki,
assume_ack2 and assume_ack3 hold at al times.

al:assume property @ (posedge clk) reqg dist {0:=40, 1:=60} ;
assume_ackl:assume property (prl);
assume_ack2:assume property (pr2);
assume_ack3:assume property (pr3);

assert reqgl:assert property (pal)

else Sdisplay("\n ack asserted while req is still de-asserted");
assert reg2:assert property (pa2)

else Sdisplay("\n ack is extended over more than one cycle");

Note that assume does not provide an action block, as the actions for an assumption serve no purpose.

17.13.3 cover statement

To monitor sequences and other behavioral aspects of the design for coverage, the same syntax is used with the
cover Statement. The tools can gather information about the evaluation and report the results at the end of
simulation. When the property for the cover statement is successful, the pass statements can specify a cover-
age function, such as monitoring al paths for a sequence. The pass statement shall not include any concurrent
assert, assume Of cover Statement.

Coverage results are divided into two: coverage for properties, coverage for sequences.
For sequence coverage, the statement appears as.
cover property (sequence expr) statement or null

The results of coverage statement for a property shall contain:
— Number of times attempted

— Number of times succeeded

— Number of times failed

— Number of times succeeded because of vacuity
In addition, statement_or_null is executed every time a property succeeds.

Vacuity rules are applied only when implication operator is used. A property succeeds non-vacuously only if
the consequent of the implication contributes to the success.

Results of coverage for a sequence shall include:
— Number of times attempted

— Number of times matched (each attempt can generate multiple matches)

In addition, statement_or_null gets executed for every match. If there are multiple matches at the same time,
the statement gets executed multiple times, one for each match.

17.13.4 Using concurrent assertion statements outside of procedural code

A concurrent assertion statement can be used outside of a procedural context. It can be used within a module,
an interface, or a program. A concurrent assertion statement is an assert, an assume, Or a cover Statement.
Such a concurrent assertion statement uses the always semantics.

The following two forms are equivalent;

Copyright 2004 Accellera. All rights reserved. 249

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

assert property (property spec) action block
always assert property (property spec) action block ;

Similarly, the following two forms are equival ent:

cover property (property spec) statement or null
always cover property (property spec) statement or null
For example:

module top (input bit clk);
logic a,b,c;
property rule3;
@ (posedge clk) a |-> b ##1 c;
endproperty
al: assert property (rule3);

endﬁé&ule
rule3 is a property declared in module top. The assert statement a1 starts checking the property from the
beginning to the end of simulation. The property is always checked. Similarly,

module top (input bit clk);
logic a,b,c;
sequence seqg3;
@ (posedge clk) b ##1 c;
endsequence
cl: cover property (seq3);

endmodule
The cover statement c1 starts coverage of the sequence seg3 from beginning to the end of simulation. The
sequence is always monitored for coverage.

17.13.5 Embedding concurrent assertions in procedural code
A concurrent assertion statement can also be embedded in a procedural block. For example:

property rule;
a ##1 b ##1 c;
endproperty

always @(posedge clk) begin
<statements>
assert property (rule);
end

If the statement appears in an always block, the property is always monitored. If the statement appearsin an
initial block, then the monitoring is performed only on the first clock tick.

Two inferences are made from the procedural context: clock from the event control of an always block, and
the enabling conditions.

A clock isinferred if the statement is placed in an always or initial block with an event control abiding by
the following rules:

250 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001

SystemVerilog 3.1a

— Theclock to beinferred must be placed as the first term of the event control as an edge specifier (posedge
EXPression or negedge EXpression).

— Thevariablesin expression must not be used anywhere in the always or initial block.

For example:

property rl;
q != d;
endproperty
always @ (posedge mclk)
g <= di;

begin

rl p: assert property (rl);

end

The above property can be checked by writing statement r1_p outside the always block, and declaring the

property with the clock as:

property rl;

@ (posedge mclk)qg !=
endproperty
always @ (posedge mclk)
g <= dil;
end

d;

begin

rlp: assert property (rl);

If the clock is explicitly specified with a property, then it must be identical to the inferred clock, as shown

below:

property r2;

@ (posedge mclk) (g !=

endproperty
always @ (posedge mclk)
g <= dil;

d) ;

begin

r2 p: assert property (r2);

end

In the above example, (posedge mclk) istheclock for property r2.

Another inference made from the context is the enabling condition for a property. Such derivation takes place
when a property is placed in an if...else block or a case block. The enabling condition assumed from the

context is used as the antecedent of
property r3;
@ (posedge mclk) (g !=
endproperty
always @ (posedge mclk)
if (a) begin
g <= dil;
r3 p: assert prop
end
end

The above example is equivalent to:

property r3;

@ (posedge mclk)a |->
endproperty
r3 p: assert property (

the property.

d) ;

begin

erty (xr3);

(g !'= 4);

r3);

Copyright 2004 Accellera. All rights reserved.

251

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

always @(posedge mclk) begin
if (a) begin
g <= dl;
end
end

Similarly, the enabling condition is also inferred from case statements.

property r4;

@ (posedge mclk) (g != d);
endproperty
always @(posedge mclk) begin
case (a)

1: begin g <= di;
r4p: assert property (r4);
end
default: gl <= di;
endcase
end

The above example is equivalent to:

property r4;
@ (posedge mclk) (a==1) |-> (g != 4d);
endproperty
r4 p: assert property (r4);
always @(posedge mclk) begin

case (a)
1: begin g <= dil;
end
default: gl <= di;
endcase

end

The enabling condition isinferred from procedural code inside an always or initial block, with the follow-
ing restrictions;

1) There must not be a preceding statement with atiming control.
2) A preceding statement shall not invoke atask call which contains atiming control on any statement.

3) The concurrent assertion statement shall not be placed in a looping statement, immediately, or in any
nested scope of the looping statement.

17.14 Clock resolution

There are anumber of ways to specify aclock for a property:
— sequence instance with a clock, for example
sequence s2; @(posedge clk) a ##2 b; endsequence

property p2; not s2; endproperty
assert property (p2);

— property, for example:

property p3; @(posedge clk) not (a ##2 b); endproperty
assert property (p3);

252 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

— contextually inferred clock from a procedural block, for example:

always @(posedge clk) assert property (not (a ##2 b));

— clocking block, for example:

clocking master clk @ (posedge clk);
property p3; not (a ##2 b); endproperty

endclocking

assert property (master clk.p3);

— default clock, for example:

default clocking master clk ; // master clock as defined above
property p4; (a ##2 b); endproperty
assert property (p4);

For a multi-clocked assertion, the clocks are explicitly specified. No default clock or inferred clock is used. In
addition, multi-clocked properties are not allowed to be defined within a clocking block.

A multi-clocked property assert statement must not be embedded in procedural code where aclock isinferred.
For example, following forms are not all owed.

always @(clk) assert property (mult clock prop);// illegal
initial @(clk) assert property (mult clock prop);// illegal

The rules for an assertion with one clock are discussed in the following paragraphs.
The clock for an assertion statement is determined in the decreasing order of priority:
1) Explicitly specified clock for the assertion.

2) Inferred clock from the context of the code when embedded.

3) Default clock, if specified.
A concurrent assertion statement must resolve to a clock. Otherwise, the statement is considered illegal.

Sequences and properties specified in clocking blocks resolve the clock by the following rules:
1) Event control of the clocking block specifies the clock.
2) No explicit event control is alowed in any property or sequence declaration.

3) If a named sequence that is defined outside the clocking block is used , its clock, if specified, must be
identical to the clocking block’s clock.

4) Multi-clock properties are not allowed.

Resolution of clock for a sequence declaration assumes that only one explicit event control can be specified.
Also, the named sequences used in the sequence declaration can, but do not need to, contain event control in
their definitions.

sequence s;
//sequence composed of two named subsequences
@(posedge s clk) e ##1 sl ##1 s2 ##1 £;
endsequence
sequence sl;
@ (posedge clkl) a ##1 b; // single clock sequence
endsequence
sequence S2;

Copyright 2004 Accellera. All rights reserved. 253

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001

@ (posedge clk2)
endsequence

c ##1 d; // single clock sequence

These example sequences are used in Table 17-3 to explain the clock resolution rules for a sequence declara-
tion. The clock of any sequence when explicitly specified is indicated by X. Otherwise, it is indicated by a
dash.

Table 17-3: Resolution of clock for a sequence declaration

s clk clkl | clk2 | Resolved clock Semantic restriction
- - - unclocked -
X - - s clk -
X X - s clk s_clk and c1k1 must beidentical
X X X s clk s_clk, clkl and c1k2 must be identical
X - X s clk s_clk and c1k2 must beidentical
- X - unclocked -
- X X unclocked clkl and c1k2 must be identical
- - X unclocked -

Once the clock for a sequence declaration is determined, the clock of aproperty declaration is resolved similar
to the resolution for a sequence declaration. A single clocked property assumes that only one explicit event
control can be specified. Also, the named sequences used in the property declaration can contain event control
in their declarations. Table 17-4 specifies the rules for property declaration clock resolution. The property has
the form:

property p;
@ (posedge p clk) not sl |=> s2;
endproperty

p_clk isthe property for the clock, c1k1 isthe clock for sequence sl and c1k2 isthe clock for sequence s2.
The same rules apply for operator | ->.

Table 17-4: Resolution of clock for a declaration

p_clk clkl | clk2 | Resolved clock Semantic restriction

- - - unclocked -

X - - p_clk -

X X - p_clk p_clk and clkl must beidentical

X X X p_clk p_clk, clkl and c1k2 must be identical

X - X p_clk p_clk and c1k2 must beidentical

- X - unclocked -

- X X unclocked or clkl and c1k2 must beidentical. If

multi-clock clkl and c1k2 are different for the case

of operator | =>, thenitis considered a
multi-clock implication

254

Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Table 17-4: Resolution of clock for a declaration

p_clk clkl | clk2 | Resolved clock Semantic restriction

- - X unclocked -

Resolution of clock for an assert statement is based on the following assumptions:
— assert Can appear in an always block, initial block or outside procedural context
— clock isinferred from an always or initial block

— default clock can be specified using default clocking block
Table 17-5 specifies the rules for clock resolution when assert appears in an always or initial block, where

i_clkistheinferred clock from an always or initial block, d_clk isthe default clock, and p_clk isthe
property clock.

Table 17-5: Resolution of clock in an always or initial block

i_clk | d_clk | p_clk | Resolved clock Semantic restriction

- - - unclocked Error. An assertion must have a clock
X - - i_clk -

- X - d clk

- - X p_clk

X - X i_clk i clkandp_clk must beidentical
X X - i_clk -

- X X p_clk

- - X p_clk -

When the assert statement is outside any procedural block, thereisno inferred clock. The rulesfor clock res-
olution are specified in Table 17-6.

Table 17-6: Resolution of clock outside a procedural block

d_clk | p_clk | Resolved clock Semantic restriction

- - unclocked Error. An assertion must have a clock
X - d clk

- X p_clk

X X p_clk

17.14.1 Clock resolution in multiply-clocked properties

Throughout this subsection, s, s, S, denote sequences without clocking events; p, p;, p, denote properties
without clocking events, m, my, m, denote multiply-clocked segquences, g, q;, 0, denote multiply-clocked

Copyright 2004 Accellera. All rights reserved. 255

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

properties; and ¢, ¢4, ¢, denote non-identical clocking event expressions.

Dueto clock flow, juxtaposition of two clocks nullifies the first. This and the nesting of clocking events within
other property building operators mean that there are subtleties in the general interpretation of the restrictions
about where the clock can change in multiply-clocked properties. For example,

@(c) s |-> @(c) (p and @(c;) p;)

appears legal because the antecedent is clocked by < and the consequent begins syntactically with the clocking
event @(c). However, the consequent sequence is equivalent to

(@(c) p) and (@(c;) p;)

and |-> cannot synchronize between clock ¢ from the antecedent and clock ¢, from the second conjunct of the
consequent. Similarly,

@(c) s |-> @l(c;) (e@(c) p)

appearsillegal due to the apparent clock change from c to ¢, across |->. However, it islegal, although arguably
misleading in style, because the consequent property is equivalent to @(c) p.

This subsection gives a more precise treatment of the restrictions on multiply-clocked use of |-> and i£/
if...else thantheintuitive discussion in Section 17.12. The present treatment depends on the notion of the set
of semantic leading clocks for a multiply-clocked sequence or property.

Some sequences and properties have no explicit leading clock event. Their initial clocking event is inherited
from an outer clocking event according to the flow of clocking event scope. In this case, the semantic leading
clock issaid to be inherited. For example, in the property

@(c) s |=> p and @(c;) p;

the semantic leading clock of the subproperty p isinherited since the initial clock of p is the clock that flows
across |=>.

A multiply-clocked sequence has a unique semantic leading clock, defined inductively as follows.
— The semantic leading clock of sisinherited.
— The semantic leading clock of @(c) sisc.

— If inherited is the semantic leading clock of m, then the semantic leading clock of @(c) misc. Otherwise,
the semantic leading clock of @(c) mis equal to the semantic leading clock of m.

— The semantic leading clock of (m) is equal to the semantic leading clock of m.

— The semantic leading clock of my ## my isequal to the semantic leading clock of m;.

The set of semantic leading clocks of a multiply-clocked property is defined inductively as follows.
— The set of semantic leading clocks of mis{c}, where c is the unique semantic leading clock of m.
— The set of semantic leading clocks of pis{inherited}.

— If inherited is an element of the set of semantic leading clocks of g, then the set of semantic leading clocks
of @(c) q isobtained from the set of semantic leading clocks of q by replacing inherited by c. Otherwise,
the set of semantic leading clocks of @(c) g isequal to the set of semantic leading clocks of g.

— The set of semantic leading clocks of (q) is equal to the set of semantic leading clocks of g.
— The set of semantic leading clocks of not gisequal to the set of semantic leading clocks of q.

— The set of semantic leading clocks of g; and g5 is the union of the set of semantic leading clocks of g; with
the set of semantic leading clocks of q».

256 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

— The set of semantic leading clocks of g, or g, is the union of the set of semantic leading clocks of g, with
the set of semantic leading clocks of .

— The set of semantic leading clocks of m|-> p isequal to the set of semantic leading clocks of m.

— The set of semantic leading clocks of m|=> p is equal to the set of semantic leading clocks of m.

— The set of semantic leading clocks of i£ (b) qis{inherited}.

— The set of semantic leading clocks of i £ (b) g, else g, is{inherited}.

— The set of semantic leading clocks of a property instance is equal to the set of semantic leading clocks of
the multiply-clocked property obtained from the body of its declaration by substituting in actual argu-
ments.

For exampl e, the multiply-clocked sequence
@(c;) s; ## @(cy) s,

has c; asits unique semantic |leading clock, while the multiply-clocked property
not (p; and (@(cy) p,)

has {inherited, c;} asits set of semantic leading clocks.

In the presence of an incoming outer clock, the inherited semantic leading clock is always understood to refer
to theincoming outer clock. On the other hand, if a property has only explicit semantic leading clocks, then the
incoming outer clock has no effect on the clocking of the property since the explicit clock events replace the
incoming outer clock. Therefore, the clocking of a property q in the presence of incoming outer clock c is
equivalent to the clocking of the property @(c) q.

Therules for using multiply-clocked overlapping implication and i £/i£...else in the presence of anincoming
outer clock can now be stated more precisely.

1) Multiply-clocked overlapping implication.
Let ¢ be the incoming outer clock. Then the clocking of m|-> q is equivalent to the clocking of
@ ml>q

In the presence of the incoming outer clock, m has a well-defined ending clock, and there is a well-
defined clock that flows across |->. The multiply-clocked overlapped implication m |-> q is lega for
incoming clock cif and only if the following two conditions are met:

a) Every explicit semantic leading clock of g isidentical to the ending clock of m.

b) If inherited isa semantic leading clock of g, then the ending clock of misequal to the clock that flows
across |->.

For example

@(c) s |-> p; or @(cy) p,

is not legal because the ending clock of the antecedent is ¢, while the consequent has ¢, as an explicit
semantic leading clock.

Also,

@(c) s ## (@(c;) s;) |->p

isnot legal because the set of semantic leading clocks of p is{inherited}, the ending clock of the anteced-
ent is ¢4, and the clock that flows across |-> and isinherited by p is c.

On the other hand,

Copyright 2004 Accellera. All rights reserved. 257

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

@(c) s |-> p; or @(c) p,

and

@(c) s ## @(c;) s; |-> p; or @(c;) p,

are both legal.
2) Multiply-clocked i£/if...else

Let ¢ betheincoming outer clock. Then the clocking of 1 £ (b) g; [else g,] isequivalent to the clocking
of

@(c) if (b) g; [else g,]

The boolean condition b is clocked by ¢, so the multiply-clocked i£/if...else if (D) g1 [else O] iS
legal for incoming clock cif and only if the following condition is met:

— Every explicit semantic leading clock of g, [or g,] isidentical to c.

For example,

@(c) if (b) p; else @(c) p,
islegal, but

@(c) if (b) @(c) (p; and @(cy) pj)

isnot.

17.15 Binding properties to scopes or instances

To facilitate verification separate from the design, it is possible to specify properties and bind them to specific
modules or instances. The following are the goals of providing this feature:

— It alows verification engineers to verify with minimum changes to the design codeffiles.
— It allows a convenient mechanism to attach verification |P to a module or an instance.

— No semantic changes to the assertions are introduced due to this feature. It is equivalent to writing proper-
ties external to amodule, using hierarchical path names.

With this feature, a user can bind a module, interface, or program instance to a module or a modul e instance.

The syntax of the bind construct is:

bind_directive ::= bind hierarchical_identifier constant_select bind_instantiation ; [/l from Annex A.1.5
bind instantiation ::=
program_instantiation
| module_instantiation
| interface _instantiation

Syntax 17-17—bind construct syntax (excerpt from Annex A)

Thebind directive can be specified in
— amodule
— aninterface

— acompilation-unit scope

258 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

A program block contains non-design code (either testbench or properties) and executesin the Reactive region,
as explained in Section 16.

Example of binding a program instance to a module:
bind cpu fpu props fpu rules 1(a,b,c);

Where:

— cpu isthe name of module.

— fpu_props iSthe name of the program containing properties.
— fpu_rules_ 1 isthe program instance name.

— Ports (a, b,c) getboundtosignals (a,b, c) of module cpu.

— EBvery instance of cpu gets the properties.
Example of binding a program instance to a specific instance of amodule:
bind cpul fpu props fpu rules 1l(a,b,c);

By binding a program to a module or an instance, the program becomes part of the bound object. The names of
assertion-related declarations can be referenced using the SystemVerilog hierarchical naming conventions.

Binding of amodule instance or an interface instance works the same way as described for programs above.

interface range (input clk,enable, input int minval, expr) ;
property crange en;

@ (posedge clk) enable |—> (minval <= expr) ;
endproperty
range chk: assert property (crange en) ;
endinteface

bind cr unit range rl(c_clk,c_en,v low, (inl&&in2)) ;

In this example, interface range isinstantiated in the module cxr_unit. Effectively, every instance of module
cr_unit shall contain the interface instance r1.

17.16 The expect statement

The expect Statement is a procedural blocking statement that allows waiting on a property evaluation. The
syntax of the expect statement accepts a named property or a property declaration, and is given below.

expect_property statement ::= // from Annex A.2.10
expect (property_spec) action_block

Syntax 17-18—expect statement syntax (excerpt from Annex A)

The expect statement accepts the same syntax used to assert a property. An expect statement causes the exe-
cuting process to block until the given property succeeds or fails. The statement following the expect is
scheduled to execute after processing the Observe region in which the property completesits evaluation. When
the property succeeds or fails the process unblocks, and the property stops being evauated (i.e., no property
evaluation is started until that expect statement is executed again).

When executed, the expect statement starts a single thread of evaluation for the given property on the subse-

guent clocking event, that is, the first evaluation shall take place on the next clocking event. If the property
fails at its clocking event, the optional else clause of the action block is executed. If the property succeeds the

Copyright 2004 Accellera. All rights reserved. 259

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

optional pass statement of the action block is executed.

program tst;
initial begin
200ms;
expect (@(posedge clk) a ##1 b ##1 c) else Serror("expect failed");
ABC:
end
endprogram

In the above example, the expect Statement specifies a property that consists of the sequence a##1 b ##1 c.
The expect statement (second statement in the initial block of program tst) blocks until the sequence a ##1
b ##1 c is matched, or is determined not to match. The property evaluation starts on the clocking event
(posedge clk) following the 200ms delay. If the sequence is matched, the processis unblocked and continuesto
execute on the statement labeled ABC. If the sequence fails to match then the e1se clause is executed, which
in this case generates a run-time error. For the expect above to succeed, the sequence a ##1 b ##1 c must
match starting on the clocking event (posedge clk) immediately after time 200ms. The sequence will not match
if a, b, or c are evaluated to be false at the first, second or third clocking event respectively.

The expect statement can be incorporated in any procedural code, including tasks or class methods. Because
it isablocking statement, the property can refer to automatic variables as well as static variables. For example,
the task below waits between 1 and 10 clock ticks for the variable data to equal a particular value, which is
specified by the automatic argument value. The second argument, success, is used to return the result of the
expect Statement: 1 for success and O for failure.

integer data;

task automatic wait for(integer value, output bit success);

expect (@(posedge clk) ##[1:10] data == value) success = 1;
else success = 0;
endtask

initial begin
bit ok;
wait for(23, ok); // wait for the value 23

end

260 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 18
Hierarchy

18.1 Introduction (informative)

Verilog has a simple organization. All data, functions and tasks are in modules except for system tasks and
functions, which are global, and can be defined in the PL1. A Verilog module can contain instances of other
modules. Any uninstantiated moduleis at the top level. This does not apply to libraries, which therefore have a
different status and a different procedure for analyzing them. A hierarchical name can be used to specify any
named object from anywhere in the instance hierarchy. The module hierarchy is often arbitrary and a lot of
effort is spent in maintaining port lists.

In Verilog, only net, reg, integer and time data types can be passed through module ports.

SystemVerilog adds many enhancements for representing design hierarchy:

— Packages containing declarations such as data, types, classes, tasks and functions

— Separate compilation support

— A compilation-unit scope visible only within a compilation unit

— Nested module declarations, to aid in representing self-contained models and libraries
— Relaxed rules on port declarations

— Simplified named port connections, using . name

— Implicit port connections, using .*

— Time unit and time precision specifications bound to modules

— A concept of interfaces to bundle connections between modules (presented in Section 19)

An important enhancement in SystemVerilog is the ability to pass any data type through module ports, includ-
ing nets, and all variable typesincluding reals, arrays, and structures.

18.2 Packages

SystemVerilog packages provide an additional mechanism for sharing parameters, data, type, task, function,
sequence, and property declarations amongst multiple SystemVerilog modules, interfaces and programs. Pack-
ages are explicitly named scopes appearing at the outermost level of the source text (at the same level as top-
level modules and primitives). Types, variables, tasks, functions, sequences, and properties may be declared
within a package. Such declarations may be referenced within modules, macromodules, interfaces, programs,
and other packages by either import or fully resolved name.

Copyright 2004 Accellera. All rights reserved. 261

SystemVerilog 3.1a

Accellera
Extensionsto Verilog-2001

package declaration ::=
{ attribute_instance} package package identifier ;
[timeunits_declaration] { { attribute instance} package item}

endpackage| : package identifier]

package item ::=

package or_generate item_declaration
| specparam_declaration
| anonymous_program

| timeunits_declaration'®

package or_generate item_declaration ::=

net_declaration
| data_declaration
| task_declaration
| function_declaration
| dpi_import_export
| extern_constraint_declaration
| class_declaration
| class_constructor_declaration
| parameter_declaration ;
| local_parameter_declaration
| covergroup_declaration
| overload_declaration
| concurrent_assertion_item_declaration

task_declaration
| function_declaration
| class_declaration
| covergroup_declaration
| class_constructor_declaration

anonymous_program ::= program ; { anonymous_program_item} endprogram
anonymous_program_item ::=

[/l from Annex A.1.3

/I from Annex A.1.10

Syntax 18-1—Package declaration syntax (excerpt from Annex A)

The package declaration creates a scope that contains declarations intended to be shared among one or more
compilation units, modules, macromodules, interfaces, or programs. Items within packages are generally type
definitions, tasks, and functions. Items within packages cannot have hierarchical references. It is aso possible
to populate packages with parameters, variables and nets. This may be useful for global items that aren’t con-
veniently passed down through the hierarchy. Variable declaration assignments within the package shall occur
before any initial, always, always comb, always_latch Of always £f blocks are started, in the same

way as variables declared in a compilation unit or module.

The following is an example of a package:

262

package ComplexPkg;

typedef struct
float i, r;
} Complex;

function Complex add(Complex a,

add.r = a.r + b.r;
add.i = a.i + b.1i;

b);

Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

endfunction

function Complex mul (Complex a, b);

mul.r = (a.r * b.r) - (a.i * b.1i);
mul.i = (a.r * b.1) + (a.i * b.r);
endfunction

endpackage : ComplexPkg

18.2.1 Referencing data in packages

Packages must exist in order for the items they define to be recognized by the scopes in which they are
imported.

One way to use declarations made in a package is to reference them using the scope resolution operator “ : :”.
ComplexPkg: :Complex cout = ComplexPkg::mul(a, b);

An alternate method for utilizing package declarations is viathe import statement.

data_declaration ::= [/l from Annex A.2.1.3

| package import_declaration
package import_declaration ::=
import package import_item { , package_import_item} ;
package import_item ::=
package identifier :: identifier
| package identifier :: *

Syntax 18-2—Package import syntax (excerpt from Annex A)

The import statement provides direct visibility of identifiers within packages. It allows identifiers declared
within packages to be visible within the current scope without a package name qualifier. Two forms of the
import statement are provided: explicit import, and wildcard import. Explicit import alows control over pre-
cisely which symbols are imported:

import ComplexPkg::Complex;
import ComplexPkg::add;

An explicit import shall beillegal if theimported identifier is declared in the same scope or explicitly imported
from another package. Importing an identifier from the same package multiple timesis allowed.

A wildcard import alows all identifiers declared within a package to be imported provided the identifier is not
otherwise defined in the importing scope:

import ComplexPkg::*;
A wildcard import makes each identifier within the package a candidate for import. Each such identifier is
imported only when it is referenced in the importing scope and it is neither declared nor explicitly imported
into the scope. Similarly, a wildcard import of an identifier is overridden by a subseguent declaration of the

same identifier in the same scope. If the same identifier is wildcard imported into a scope from two different
packages, the identifier shall be undefined within that scope and result in an error if theidentifier is used.

18.2.2 Search order Rules

Table 18-1 describes the search order rules for the declarations imported from a package. For the purposes of
the discussion below, consider the following package declarations:

Copyright 2004 Accellera. All rights reserved. 263

SystemVerilog 3.1a

package p;
typedef enum { FALSE,

TRUE } BOOL;

Accellera

Extensionsto Verilog-2001

const BOOL ¢ = FALSE;
endpackage
package g;
const int ¢ = 0;
endpackage
Table 18-1: Scoping Rules for Package Importation
Scope Scope
| comaininga | contaninga | QoT@ninga | containinga
Example Description local local qeclaratlon c_ch dgclaratlon of c
declaration of ¢ | declaration of ¢ lrr]ported using |'mported as
import g::c import g::*
u = p::c; A quaified OK OK OK OK
y = p::TRUE; package identi-

fierisvisiblein | Directreference | Direct reference | Direct reference | Direct reference

any scope (with- | tocreferstothe | tocisillegal tocreferstothe | tocreferstothe

out theneed for | locally declared | sinceitisunde- | cimported from | cimported from

an import C. fined. q. q.

clause).
p::creferstothe | p:creferstothe | p:creferstothe | p::creferstothe
cin packagep. cin packagep. cin packagep. cin packagep.

import p::*; All declarations | OK OK OK OK / ERROR
insidepackagep

become poten- Direct reference | Direct reference | Direct reference | cisundefinedin

tialy directly tocreferstothe | tocreferstothe | tocreferstothe | theimporting

_ . visiblein the locally declared | cimported from | cimported from | scope. Thus, a
y = FALSE; h . -

importing C. package p. package g. direct reference

scope: tocisillega

-c Direct reference and resultsin an

—BOOL to other identifi- error.

—FALSE ers(eg.,

—TRUE FALSE) refer to The import
those implicitly clauseis other-
imported from wise allowed.
package p.

import p::c; The imported ERROR OK ERROR OK /ERROR
identifiers

becomedirectly | Direct reference | Itshall beillegal | Theimport of

visiblein the tocreferstothe | toimport an p::c makes any

PE(1 e) importing cimported from | identifier prior reference
scope: package p. defined in the tocillegal.

-c importing

scope. Otherwise,

direct reference
tocreferstothe
cimported from

package p.

When using awildcard import, areference to an undefined identifier that is declared within the package causes
that identifier to be imported into the local scope. However, an error results if the same identifier is later
declared or explicitly imported. Thisis shown in the following example:

264

Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

module foo;

import qg::*;

wire a = c¢; // This statement forces the import of g::c;

import p::c; // The conflict with g::c and p::c creates an error.
endmodule

18.3 Compilation unit support

SystemVerilog supports separate compilation using compiled units. The following terms and definitions are
provided:

— compilation unit: acollection of one or more SystemVerilog source files compiled together

— compilation-unit scope: a scope that islocal to the compilation unit. It contains all declarations that lie out-
side of any other scope

— $unit: the name used to explicitly access the identifiers in the compilation-unit scope

The exact mechanism for defining which files constitute a compilation unit is tool specific. Tools shall provide
amechanism to specify the files that make up a compilation unit. Two extreme cases are:

1) All files make a single compilation unit (in which case the declarations in the compilation-unit scope are
accessible anywhere within the design)

2) Eachfileis aseparate compilation unit (in which case the declarations in each compilation-unit scope are
accessible only within its corresponding fil€)

The contents of files included using one or more * include directives become part of the compilation unit of
thefile they are included within.

If there is a declaration that isincomplete at the end of afile, then the compilation unit including that file will
extend through each successive file until there are no incomplete declarations at the end of the group of files.

The default isthat each file is a separate compilation unit.

A tool must also provide a mechanism (such as a command line switch) that specifies that al of the files com-
piled together are a single compilation unit.

There are other possible mappings of files to compilation units and the mechanism for defining them are tool
specific and may not be portable.

The compilation-unit scope can contain any item that can be defined within a package. These items are in the
compilation-unit scope hame space.

The following items are visible in all compilation units; modules, macromodules, primitives, programs, inter-
faces, and packages. Items defined in the compilation-unit scope cannot be accessed by name from outside the
compilation unit. Access to the items in a compilation-unit scope can be accessed using the PLI, which must
provide an iterator to traverse all the compilation units.

In Verilog, compiler directives once seen by atool apply to al forthcoming source text. This behavior shall be
supported within a separately compiled unit; however, compiler directives from one separately compiled unit
shall not affect other compilation units. This may result in a difference of behavior between compiling the
units separately or as a single compilation unit containing the entire source.

When an identifier is referenced within a scope, SystemVerilog follows the Verilog name search rules:

— First, the nested scope is searched (1364-2001 12.6) (including nested module declarations), including any
identifiers made avail able through package import declarations

Copyright 2004 Accellera. All rights reserved. 265

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

— Next, the compilation-unit scope is searched (including any identifiers made available through package
import declarations

— Finally, the instance hierarchy is searched (1364-2001 12.5)

$unit isthe name of the scope that encompasses a compilation unit. Its purpose is to allow the unambiguous
reference to declarations at the outermost level of a compilation unit (i.e., those in the compilation-unit scope).
Thisis done via the same scope resol ution operator used to access package items.

For example:

bit b;
task foo;

int b;

b =5 + $unit::b; // Sunit::b is the one outside
endtask

The compilation-unit scope allows users to easily share declarations (e.g., types) across the unit of compila-
tion, but without having to declare a package from which the declarations are subsequently imported. Thus, the
compilation-unit scope is similar to an implicitly defined anonymous package. Because it has no name, the
compilation-unit scope cannot be used with an import statement, and the identifiers declared within the scope
are not accessible via hierarchical references. Within a particular compilation unit, however, the special name
$unit can be used to explicitly access the declarations of its compilation-unit scope.

18.4 Top-level instance

The name $root is added to unambiguously refer to atop level instance, or to an instance path starting from
the root of the instantiation tree. $root istheroot of the instantiation tree.

For example:
Sroot.A.B // item B within top instance A
$root.A.B.C // item C within instance B within instance A

sroot allows explicit access to the top of the instantiation tree. This is useful to disasmbiguate a local path
(which takes precedence) from the rooted path. In Verilog, a hierarchical path is ambiguous. For example,
A.B.C can mean the local a.B.c or the top-level A.B.c (assuming there is an instance 2 that contains an
instance B at both the top level and in the current module). Verilog addresses that ambiguity by giving priority
to thelocal scope, thereby preventing accessto the top level path. $root allows explicit accessto the top level
in those cases in which the name of the top level moduleisinsufficient to uniquely identify the path.

266 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

18.5 Module declarations

module_declaration ::= // from Annex A.1.3
module_nonansi_header [timeunits_declaration] { module _item}
endmodule[: module identifier]
| module_ansi_header [timeunits_declaration] { non_port_module item}
endmodule[: module identifier]
| { attribute_instance} module_keyword [lifetime] module_identifier (.*) ;
[timeunits_declaration] { module_item } endmodule[: module identifier]
| extern module_nonansi_header
| extern module_ansi_header

module_nonansi_header ::=
{ attribute_instance } module_keyword [lifetime] module_identifier [parameter_port_list]
list_of ports;
module ansi_header ::=
{ attribute_instance} module_keyword [lifetime] module identifier [parameter_port _list]
[list_of port_declarations] ;
module_keyword ::= module | macromodule
timeunits_declaration ::=
timeunit time_litera ;
| timeprecision time_literd ;
| timeunit time _literal ;
timeprecision time_litera ;
| timeprecision time_literd ;
timeunit time _litera ;

Syntax 18-3—Module declaration syntax (excerpt from Annex A)

In Verilog, a module must be declared apart from other modules, and can only be instantiated within another
module. A module declaration can appear after it isinstantiated in the source text.

SystemVerilog adds the capability to nest module declarations.
module ml(...); ... endmodule
module m2(...); ... endmodule

module m3(...);

ml i1(...); // instantiates the local ml declared below
m2 14 (...); // instantiates m2 - no local declaration
module ml(...); ... endmodule // nested module declaration,

// ml module name is in m3’s name space
endmodule

18.6 Nested modules

A module can be declared within another module. The outer name space is visible to the inner module, so that
any name declared there can be used, unless hidden by a local name, provided the module is declared and
instantiated in the same scope.

One purpose of nesting modules is to show the logical partitioning of a module without using ports. Names
that are global are in the outermost scope, and names that are only used locally can be limited to local modules.

Copyright 2004 Accellera. All rights reserved. 267

SystemVerilog 3.1a

Accellera
Extensionsto Verilog-2001

// This example shows a D-type flip-flop made of NAND gates

module dff flat (input d, ck, pr, clr, output g, ng);
wire gl, ngl, g2, ng2;

nand glb (ngl, d, clr, ql);

nand gla (gql, ck, ng2, ngl);

nand g2b (ng2, ck, clr, g2);

nand g2a (g2, ngl, pr, ng2);

nand g3a (g, ng2, clr, nqg);

nand g3b (ng, gl, pr, q);
endmodule

// This example shows how the flip-flop can be structured into 3 RS latches.

module dff nested(input d,
wire gl, ngl, ng2;

ck, pr, clr, output g, nqg);

module ff1l;
nand glb
nand gla

endmodule

££1 11 ();

(ngl, 4, clr,
(g1, ck, ng2,

ql);
ngl) ;

module ff2;

wire g2; // This wire can be encapsulated in ff2
nand g2b (ng2, ck, clr, g2);
nand g2a (g2, ngl, pr, ng2);

endmodule

££f2 i2();

module ff3;
nand g3a (g, ng2, clr, ng);
nand g3b (ng, gl, pr, q);

endmodule

££3 13();

endmodule

The nested modul e declarations can also be used to create alibrary of modules that islocal to part of a design.

module partl(....);

module and2 (input a, b, output z);

éﬁéﬁodule

module or2 (input a, b, output z);

éﬁéﬁodule

an&é ul(), u2(....), ud(....);
endmodule

This alows the same module name, e.g. and2, to occur in different parts of the design and represent different
modules. Note that an alternative way of handling this problem is to use configurations.

Nested modules with no ports that are not explicitly instantiated shall be implicitly instantiated once with an
instance name identical to the module name. Otherwise, if they have ports and are not explicitly instantiated,

268

Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

they are ignored.

18.7 Extern modules

To support separate compilation, extern declarations of a module can be used to declare the ports on a module
without defining the moduleitself. An extern module declaration consists of the keyword extern followed by
the module name and the list of ports for the module. Both list of ports syntax (possibly with parameters), and
original Verilog style port declarations can be used. Note that the potential existence of defparams precludes
the checking of the port connection information prior to elaboration time even for list of ports style declara-
tions.

The following example demonstrates the usage of extern module declarations.

extern module m (a,b,c,d);
extern module a # (parameter size= 8, parameter type TP = logic [7:0])
(input [size:0] a, output TP Db);

module top ();
wire [8:0] a;
logic [7:0] b;

mm (.%);
aa (.*);
endmodule

Modulesm and a are then assumed to be instantiated as:

module top () ;
mm (a,b,c,d);
a a (a,b);

endmodule

If an extern declaration exists for a module, it is possible to use . * as the ports of the module. This usage
shall be equivalent to placing the ports (and possibly parameters) of the extern declaration on the module.

For example,
extern module m (a,b,c,d);
extern module a # (parameter size = 8, parameter type TP = logic [7:0])
(input [size:0] a, output TP b);
module m (.%*);
input a,b,c;
output d;
endmodule
module a (.*);
endmodule
is equivalent to writing:
module m (a,b,c,d);
input a,b,c;
output d;

endmodule

module a # (parameter size = 8, parameter type TP = logic [7:0])

Copyright 2004 Accellera. All rights reserved. 269

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

(input [size:0] a, output TP Db);
endmodule
Extern module declarations can appear at any level of the instantiation hierarchy, but are visible only within

the level of hierarchy in which they are declared. It shall be an error for the module definition to not exactly
match the extern module declaration.

18.8 Port declarations

inout_declaration ::= Il from Annex A.2.1.2
inout port_typelist_of port_identifiers
input_declaration ::=
input port_typelist_of port_identifiers
| input data_typelist_of variable identifiers
output_declaration ::=
output port_typelist_of port_identifiers
| output data type list_of variable port_identifiers
interface _port_declaration ::=
interface identifier list_of _interface identifiers
| interface_identifier . modport_identifier list_of_interface identifiers
ref_declaration ::=ref data typelist_of port_identifiers
port_type ::= I/l from Annex A.2.2.1
[net_type or_trireg] [signing] { packed dimension}

Syntax 18-4—Port declaration syntax (excerpt from Annex A)

With SystemVerilog, a port can be a declaration of a net, an interface, an event, or a variable of any type,
including an array, a structure or a union.

typedef struct {

bit isfloat;

union { int i; shortreal f; } n;
} tagged_st; // named structure

module mhl (input int inl, input shortreal in2, output tagged st out) ;
endmodule
For thefirst port, if neither atype nor adirection is specified, then it shall be assumed to be a member of a port
list, and any port direction or type declarations must be declared after the port list. Thisis compatible with the
Verilog-1995 syntax. If the first port type but no direction is specified, then the port direction shall default to

inout. If the first port direction but no typeis specified, then the port type shall default to wire. This default
type can be changed using the *default nettype compiler directive, asin Verilog.

// Any declarations must follow the port list, because first port does not
// have either a direction or type specified; Port directions default to inout
module mh4 (x, V) ;
wire x;
trio y;
endmodule

For subsequent portsin the port list, if the type and direction are omitted, then both are inherited from the pre-

270 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

vious port. If only the direction is omitted, then it is inherited from the previous port. If only the type is omit-
ted, it shall default to wire. This default type can be changed using the ‘default nettype compiler
directive, asin Verilog.

// second port inherits its direction and type from previous port
module mh3 (input byte a, Db);

endﬁé&ule
Generic interface ports cannot be declared using the Verilog-1995 list of ports style. Generic interface ports
can only be declared by using alist of port declaration style.

module cpuMod (interface d, interface j);
endmodule
18.9 List of port expressions

Verilog 1364-2001 created alist_of port_declarations alternate style which minimized the duplication of data
used to specify the ports of a module. SystemVerilog adds an explicitly named port declaration to that style,
allowing elements of arrays and structures, concatenations of elements, or aggregate expressions of elements
declared in amodule, interface or program to be specified on the port list.

Like explicitly named ports in a module port declaration, port identifiers exist in their own namespace for each
port list. When port item isjust asimple port identifier, that identifier is used as both a reference to an interface
item and a port identifier. Once a port identifier has been defined, there shall not be another port definition with
this same name.

For example:

module mymod (
output .P1(r([3:0])
output .P2(r([7:4])
ref Y (%),
input bit R);

logic [7:0] r;
int x;

endﬁé&ule
The self-determined type of the port expression becomes the type for the port. If the port expression isto be an
aggregate expression, then a cast must be used since self-determined aggregate expressions are not allowed.
The port expression must resolve to a legal expression for type of module port (See section 18.12—Port con-

nection rules). The port expression is optional because ports can be defined that do not connect to anything
internal to the port.

18.10 Time unit and precision

SystemVerilog has atime unit and precision declaration which has the equivalent functionality of the *t imes-
cale compiler directivesin Verilog-2001. Use of these declarations removes the file order dependencies prob-
lems with compiler directives. The time unit and precision can be declared by the timeunit and
timeprecision keywords, respectively, and set to a time literal which must be a power of 10 units. For
example;

timeunit 100ps;
timeprecision 10fs;

Copyright 2004 Accellera. All rights reserved. 271

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

There shall be at most one time unit and one time precision for any module, program, package or interface def-
inition, or in any compilation-unit scope. This shal define atime scope. If specified, the timeunit and time-
precision declarations shall precede any other items in the current time scope. The timeunit and
timeprecision declarations can be repeated as later items, but must match the previous declaration within
the current time scope.

If a timeunit is not specified in the module, program, package or interface definition, then the time unit is
shall be determined using the following rules of precedence:

1) If the module or interface definition is nested, then the time unit shall be inherited from the enclosing
modul e or interface (programs and packages cannot be nested).

2) Else if a timescale directive has been previoudy specified (within the compilation unit), then the time
unit shall be set to the units of the last * timescale directive.

3) Else, if the compilation-unit scope specifies a time unit (outside all other declarations), then the time unit
shall be set to the time units of the compilation unit.

4) Else, the default time unit shall be used.

The time unit of the compilation-unit scope can only be set by a timeunit declaration, not a ‘timescale
directive. If it is not specified then the default time unit shall be used.

If atimeprecision isnot specified in the current time scope, then the time precision shall be determined fol-
lowing the same precedence as with time units.

The global time precision is the minimum of all the timeprecision statements and the smallest time precision
argument of all the ~timescale compiler directives (known as the precision of the time unit of the simulation
in Section 19.8 of the IEEE 1364-2001 standard) in the design. The step time unit is equal to the global time
precision.

18.11 Module instances

module_instantiation ::= // from Annex A.4.1.1
module_identifier [parameter_value assignment] hierarchical_instance{ , hierarchical _instance};
parameter_value assignment ::=# (list_of_parameter_assignments)

list_of parameter_assignments::=
ordered_parameter_assignment { , ordered_parameter_assignment }
| named_parameter_assignment { , named_parameter_assignment }

ordered_parameter_assignment ::= param_expression
named_parameter_assignment ::= . parameter_identifier ([param_expression])
hierarchical_instance ::= name_of_instance ([list_of port_connections])
name_of instance ::=instance identifier { unpacked dimension }
list_of_port_connections’ ::=
ordered_port_connection { , ordered_port_connection }
| named_port_connection { , named_port_connection }

ordered_port_connection ::={ attribute_instance } [expression]

named_port_connection ::=
{ attribute_instance} . port_identifier [([expression])]
| { attribute_instance} .*

param_expression ::= mintypmax_expression | data_type // from Annex A.8.3

Syntax 18-5—Module instance syntax (excerpt from Annex A)

272 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

A module can be used (instantiated) in two ways, hierarchical or top level. Hierarchical instantiation allows
more than one instance of the same type. The module name can be a module previously declared or one
declared later. Actual parameters can be named or ordered. Port connections can be named, ordered or implic-
itly connected. They can be nets, variables, or other kinds of interfaces, events, or expressions. See below for
the connection rules.

Consider an ALU accumulator (alu_accum) example module that includes instantiations of an ALU module,
an accumulator register (accum) module and a sign-extension (xtend) module. The module headers for the
three instantiated modules are shown in the following example code.

module alu (
output reg [7:0] alu out,
output reg zero,
input [7:0] ain, bin,
input [2:0] opcode) ;
// RTL code for the alu module
endmodule

module accum (

output reg [7:0] dataout,

input [7:0] datain,

input clk, rst n);

// RTL code for the accumulator module
endmodule

module xtend (

output reg [7:0] dout,

input din,

input clk, rst n);

// RTL code for the sign-extension module
endmodule

18.11.1 Instantiation using positional port connections

Verilog has aways permitted instantiation of modules using positional port connections, as shown in the
alu_accuml module example, below.

module alu accuml (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

alu alu (alu out, , ain, bin, opcode) ;

accum accum (dataout[7:0], alu out, clk, rst n);

xtend xtend (dataout[15:8], alu out[7], clk, rst n);
endmodule

Aslong as the connecting variables are ordered correctly and are the same size as the instance-ports that they
are connected to, there shall be no warnings and the simulation shall work as expected.

18.11.2 Instantiation using named port connections

Verilog has aways permitted instantiation of modules using named port connections as shown in the
alu_accum2 module example.

module alu accum2 (

Copyright 2004 Accellera. All rights reserved. 273

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

alu alu (.alu_out (alu out), .zero(),
.ain(ain), .bin(bin), .opcode (opcode)) ;
accum accum (.dataout (dataout([7:0]), .datain(alu out),
.clk(clk), .rst n(rst n));
xtend xtend (.dout (dataout[15:8]), .din(alu out([7]),
.clk(clk), .rst n(rst n));
endmodule

Named port connections do not have to be ordered the same as the ports of the instantiated module. The vari-
ables connected to the instance ports must be the same size or a port-size mismatch warning shall be reported.

18.11.3 Instantiation using implicit .name port connections

SystemVerilog adds the capability to implicitly instantiate ports using a .name syntax if the instance-port name
and size match the connecting variable-port name and size. This enhancement eliminates the requirement to
list aport name twice when the port name and signal name are the same, while still listing all of the ports of the
instantiated module for documentation purposes.

In the following alu_accum3 example, al of the ports of the instantiated alu module match the names of the
variables connected to the ports, except for the unconnected zero port, which islisted using a named port con-
nection, showing that the port is unconnected. Implicit .name port connections are made for all name and size
matching connections on the instantiated module.

Inthe same alu_accum3 example, the accum module has an 8-bit port called dataout that is connected to a
16-bit bus called dataout. Because the internal and external sizes of dataout do not match, the port must be
connected by name, showing which bits of the 16-bit bus are connected to the 8-hit port. The datain port on
the accum is connected to a bus by a different name (a1u_out), so this port is aso connected by name. The
clk and rst_n ports are connected using implicit .name port connections. Also in the same alu accum3
example, the xtend module has an 8-bit output port called dout and a 1- bit input port called din. Since nei-
ther of these port names match the names (or sizes) of the connecting variables, both are connected by name.
The c1k and rst_n ports are connected using implicit .name port connections.

module alu accum3 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

alu alu (.alu out, .zero(), .ain, .bin, .opcode);

accum accum (.dataout (dataout[7:0]), .datain(alu out), .clk, .rst n);

xtend xtend (.dout (dataout[15:8]), .din(alu out([7]), .clk, .rst n);
endmodule

A .port_identifier port connection is semanticaly equivalent to the named port connection
.port_identifier (name) port connection with the following exceptions:

— Theidentifier referenced by .port_identifier shall not create an implicit wire declaration.

— It shall beillegal for a.port_identifier port connection to create an implicit cast. Thisincludes truncation or
padding.

— A conversion between a 2-state and 4-state type of the same bit length is alegitimate cast.

274 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

— A port connection between a net type and a variable type of the same hit length is alegitimate cast.

— It shall bean error if a.port_identifier port connection between two dissimilar net types would generate a
warning message as required by the Verilog-2001 standard.

18.11.4 Instantiation using implicit .* port connections

SystemVerilog adds the capability to implicitly instantiate ports using a . * syntax for al ports where the
instance-port name and size match the connecting variable-port name and size. This enhancement eliminates
the requirement to list any port where the name and size of the connecting variable match the name and size of
the instance port. Thisimplicit port connection styleis used to indicate that all port names and sizes match the
connections where emphasisis placed only on the exception ports. The implicit . * port connection syntax can
greatly facilitate rapid block-level testbench generation where al of the testbench variables are chosen to
match the instantiated module port names and sizes.

Inthe following alu_accum4 example, al of the ports of the instantiated alu module match the names of the
variables connected to the ports, except for the unconnected zero port, which islisted using a named port con-
nection, showing that the port is unconnected. The implicit . * port connection syntax connects all other ports
on the instantiated module.

In the same alu_accum4 example, the accum module has an 8-bit port called dataout that is connected to a
16-bit bus called dataout. Because the internal and external sizes of dataout do not match, the port must be
connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. The datain port on
the accum is connected to a bus by a different name (alu_out), so this port is aso connected by name. The
clk and rst_n portsare connected using implicit . = port connections. Also in the same alu_accum4 exam-
ple, the xtend module has an 8-bit output port called dout and a 1- bit input port called din. Since neither of
these port names match the names (or sizes) of the connecting variables, both are connected by name. The c1k
and rst_n ports are connected using implicit . * port connections.

module alu accum4 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

alu alu (.*, .zero());
accum accum (.*, .dataout(dataout[7:0]), .datain(alu out)) ;
xtend xtend (.*, .dout(dataout[15:8]), .din(alu out[7]));

endmodule

An implicit . * port connection is semantically equivalent to a default .name port connection for every port
declared in the instantiated module. A named port connection can be mixed with a . * connection to override
the port connection to a different expression or to leave the port unconnected.

When the implicit . * port connection is mixed in the same instantiation with named port connections, the
implicit . * port connection token can be placed anywhere in the port list. The . * token can only appear at
most once in the port list.

Modules can be instantiated into the same parent module using any combination of legal positional, named,
implicit .name connected and implicit . * connected instances as shown in alu_accums example.

module alu accum5 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

Copyright 2004 Accellera. All rights reserved. 275

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

// mixture of named port connections and
// implicit .name port connections
alu alu (.ain(ain), .bin(bin), .alu out, .zero(), .opcode);

// positional port connections
accum accum (dataout[7:0], alu out, clk, rst n);

// mixture of named port connections and implicit .* port connections
xtend xtend (.dout (dataout[15:8]), .*, .din(alu out[7]));
endmodule

18.12 Port connection rules

SystemVerilog extends Verilog port connections by making all variable data types available to pass through
ports. It does this by allowing both sides of a port connection to have the same compatible data type, and by
allowing continuous assignments to variables. It also creates a new type of port qualifier, re£, to allow shared
variable behavior across a port by passing a hierarchical reference.

18.12.1 Port connection rules for variables

If aport declaration has a variable data type, then its direction controls how it can be connected when instanti-
ated, asfollows:

— An input port can be connected to any expression of a compatible data type. A continuous assignment
shall be implied when a variable is connected to an input port declaration. Assignments to variables
declared as an input port shall be illegal. If left unconnected, the port shall have the default initial value
corresponding to the data type.

— An output port can be connected to a variable (or a concatenation) of a compatible data type. A continu-
ous assignment shall be implied when a variable is connected the output port of an instance. Procedural or
continuous assignments to a variable connected to the output port of an instance shall beillegal.

— Anoutput port can be connected to a net (or a concatenation) of a compatible data type. In this case, mul-
tiple drivers shall be permitted on the net asin Verilog-2001.

— A variable data type is not permitted on either side of an inout port.

— A ref port shall be connected to an equivalent variable data type. References to the port variable shall be
treated as hierarchal referencesto the variableit is connected to in itsinstantiation. Thiskind of port cannot
be left unconnected. See Section 5.8.1, Equivalent types.

18.12.2 Port connection rules for nets

If a port declaration has awire type (which is the default), or any other net type, then its direction controls
how it can be connected as follows:

— An input can be connected to any expression of a compatible data type. If left unconnected, it shall have
the value 'z.

— An output can be connected to a net type (or a concatenation of net types) or a compatible variable type
(or a concatenation of variable types).

— An inout can be connected to a net type (or a concatenation of net types) or left unconnected, but not to a
variable type.

Note that where the data types differ between the port declaration and connection, an initial value change event
can be caused at time zero.

276 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

18.12.3 Port connection rules for interfaces

A port declaration can be a generic interface or named interface type. An interface port instance must always
be connected to an interface instance or a higher-level interface port. An interface port cannot be left uncon-
nected.

If a port declaration has a generic interface type, then it can be connected to an interface instance of any type.
If aport declaration has a named interface type, then it must be connected to an interface instance of the iden-
tical type.

18.12.4 Compatible port types

The same rules for assignment compatibility are used for compatible port types for ports declared as an input
or an output variable, or for output ports connected to variables. SystemVerilog does not change any of the
other port connection compatibility rules

18.12.5 Unpacked array ports and arrays of instances

For an unpacked array port, the port and the array connected to the port must have the same number of
unpacked dimensions, and each dimension of the port must have the same size as the corresponding dimension
of the array being connected.

If the size and type of the port connection match the size and type of asingle instance port, the connection shall
be made to each instance in an array of instances.

If the port connection is an unpacked array, the unpacked array dimensions of each port connection shall be
compared with the dimensions of the instance array. If they match exactly in size, each element of the port con-
nection shall be matched to the port left index to left index, right index to right index. If they do not match it
shall be considered an error.

If the port connection is a packed array, each instance shall get a part-select of the port connection, starting
with al right-hand indices to match the right most part-select, and iterating through the right most dimension
first. Too many or too few bits to connect all the instances shall be considered an error.

18.13 Name spaces

SystemVerilog has eight name spaces for identifiers, two are global (definitions name space and package name
space), two are global to the compilation unit (compilation unit name space and text macro name space) and
four arelocal. The eight name spaces are described as follows:

1) Thedefinitions name space unifies al the non-nested module, macromodule, primitive, program, and
interface identifiers defined outside of all other declarations. Once a hame is used to define a module,
macromodule, primitive, program, or interface within one compilation unit the name shall not be used
again (in any compilation unit) to declare another non-nested module, macromodule, primitive, program,
or interface outside of all other declarations. This is compatible with the definitions name space as defined
in |EEE 1364-2001.

2) The package name space unifies all the package identifiers defined among all compilation units. Once a
name is used to define a package within one compilation unit the name shall not be used again to declare
another package within any compilation unit.

3) The compilation-unit scope name space exists outside the module, macromodule, interface,
package, program, and primitive constructs. It unifies the definitions of the functions, tasks,
parameters, named events, net declarations, variable declarations and user defined types within the
compilation-unit scope.

Copyright 2004 Accellera. All rights reserved. 277

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

4) The text macro name space is global within the compilation unit. Since text macro names are introduced
and used with aleading * character, they remain unambiguous with any other name space. The text macro
names are defined in the linear order of appearance in the set of input files that make up the compilation
unit. Subsequent definitions of the same name override the previous definitions for the balance of the input
files.

5) The module name space is introduced by the module, macromodule, interface, package, program,
and primitive constructs. It unifies the definition of modules, macromodules, interfaces, programs,
functions, tasks, named blocks, instance names, parameters, named events, net declarations, variable
declarations and user defined types within the enclosing construct.

6) The block name space is introduced by named or unnamed blocks, the specify, function, and task
congtructs. It unifies the definitions of the named blocks, functions, tasks, parameters, named events,
variable type of declaration and user defined types within the enclosing construct.

7) The port name space is introduced by the module, macromodule, interface, primitive, and
program constructs. It provides a means of structurally defining connections between two objects that are
in two different name spaces. The connection can be unidirectional (either input Or output) or
bidirectional (inout or ref). The port name space overlaps the module and the block name spaces.
Essentially, the port name space specifies the type of connection between names in different name spaces.
The port type of declarations includes input, output, inout, and ref. A port name introduced in the
port name space can be reintroduced in the module name space by declaring a variable or a net with the
same name as the port name.

8) The attribute name space is enclosed by the (*» and *) constructs attached to a language element (see
Section 2.8). An attribute name can be defined and used only in the attribute name space. Any other type
of name cannot be defined in this name space.

18.14 Hierarchical names
Hierarchical names are also called nested identifiers. They consist of instance names separated by periods,
where an instance name can be an array element. The instance name sroot refersto thetop of the instantiated
design and is used to unambiguously gain access to the top of the design.

Sroot.mymodule.ul // absolute name

ul.structl.fieldl // ul must be visible locally or above, including globally

adderl[5] .sum

Nested identifiers can be read (in expressions), written (in assignments or task/function calls) or triggered off
(in event expressions). They can also be used as task or function names.

278 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 19
Interfaces

19.1 Introduction (informative)

The communication between blocks of adigital system isacritical areathat can affect everything from ease of
RTL coding, to hardware-software partitioning to performance analysis to bus implementation choices and
protocol checking. The interface construct in SystemVerilog was specifically created to encapsulate the com-
munication between blocks, allowing a smooth migration from abstract system-level design through succes-
sive refinement down to lower-level register-transfer and structural views of the design. By encapsulating the
communication between blocks, the interface construct also facilitates design re-use. Theinclusion of interface
capabilitiesis one of the major advantages of SystemVerilog.

At itslowest level, an interface is a named bundle of nets or variables. The interface isinstantiated in adesign
and can be accessed through a port as a single item, and the component nets or variables referenced where
needed. A significant proportion of a Verilog design often consists of port lists and port connection lists, which
are just repetitions of names. The ability to replace a group of names by a single name can significantly reduce
the size of a description and improve its maintainability.

Additional power of the interface comes from its ability to encapsulate functionality as well as connectivity,
making an interface, at its highest level, more like a class template. An interface can have parameters, con-
stants, variables, functions and tasks. The types of elements in an interface can be declared, or the types can be
passed in as parameters. The member variables and functions are referenced relative to the instance name of
the interface as instance.member. Thus, modules that are connected via an interface can simply call the task/
function members of that interface to drive the communication. With the functionality thus encapsulated in the
interface, and isolated from the module, the abstraction level and/or granularity of the communication protocol
can be easily changed by replacing the interface with a different interface containing the same members but
implemented at a different level of abstraction. The modules connected via the interface don’t need to change
atall.

To provide direction information for module ports and to control the use of tasks and functions within particu-
lar modules, themodport construct is provided. As the name indicates, the directions are those seen from the
module.

In addition to task/function methods, an interface can also contain processes (i.e. initial oOr always blocks)
and continuous assignments, which are useful for system-level modeling and testbench applications. This
allows the interface to include, for example, its own protocol checker that automatically verifies that all mod-
ules connected via the interface conform to the specified protocol. Other applications, such as functional cov-
erage recording and reporting, protocol checking and assertions can a so be built into the interface.

The methods can be abstract, i.e. defined in one module and called in another, using the export and import con-
structs. This could be coded using hierarchical path names, but this would impede re-use because the names
would be design-specific. A better way is to declare the task and function names in the interface, and to use
local hierarchical names from the interface instance for both definition and call. Broadcast communication is
modeled by forkjoin tasks, which can be defined in more than one module and executed concurrently.

Copyright 2004 Accellera. All rights reserved. 279

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

19.2 Interface syntax

interface_declaration ::= // from Annex A.1.3
interface_nonansi_header [timeunits_declaration] { interface item}
endinterface[: interface identifier]
| interface ansi_header [timeunits declaration] { non_port_interface item}
endinterface[: interface identifier]
| { attribute instance} interface interface identifier (.*) ;
[timeunits_declaration] { interface_item}
endinterface[: interface_identifier]
| extern interface_nonansi_header
| extern interface_ansi_header
interface_nonansi_header ::=
{ attribute_instance } interface[lifetime] interface identifier
[parameter_port_list] list_of ports;
interface_ansi_header ::=
{attribute_instance} interface| lifetime] interface identifier
[parameter_port_list] [list_of port_declarations] ;
modport_declaration ::= modport modport_item { , modport_item} ; // from Annex A.2.9
modport_item ::= modport_identifier (modport_ports declaration { , modport_ports_declaration })
modport_ports declaration ::=
{ attribute_instance} modport_simple ports declaration
| { attribute_instance } modport_hierarchical_ports_declaration
| { attribute_instance } modport_tf_ports declaration
| { attribute_instance’} modport_clocking_declaration
modport_clocking_declaration ::= clocking clocking_identifier
modport_simple_ports declaration ::=
port_direction modport_simple port { , modport_simple port }
modport_simple_port ::=
port_identifier
| . port_identifier ([expression])
modport_hierarchical_ports declaration ::=
interface instance identifier [[constant_expression]] . modport_identifier
modport_tf_ports declaration ::=
import_export modport_tf_port { , modport_tf_port }
modport_tf_port ::=
method_prototype
| tf_identifier
import_export ::=import | export
interface_instantiation ::= Il from Annex A.4.1.2
interface_identifier [parameter_value_assignment]
hierarchical_instance{ , hierarchical_instance} ;

Syntax 19-1—Interface syntax (excerpt from Annex A)

The interface construct provides a new hierarchical structure. It can contain smaller interfaces and can be
passed through ports.

The aim of interfaces is to encapsulate communication. At the lower level, this means bundling variables and
wires in interfaces, and can impose access restrictions with port directions in modports. The modules can be

280 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

made generic so that the interfaces can be changed. The following examples show these features. At a higher
level of abstraction, communication can be done by tasks and functions. Interfaces can include task and func-
tion definitions, or just task and function prototypes (see Section 19.6.1 An example of using tasks in an inter-
face) with the definition in one module (server/dave) and the call in another (client/master).

A simple interface declaration is as follows (see Syntax 19-1 for the complete syntax):

interface identifier;

iﬁéerface_items

endiﬁ£erface [: identifier]
An interface can be instantiated hierarchically like amodule, with or without ports. For example:

myinterface #(100) scalarl, vector[9:0];
In this example, 11 instances of the interface of type myinterface have been instantiated and the first param-
eter within each interface is changed to 100. One myinterface instance is instantiated with the name
scalarl, and an array of 10 myinterface interfaces are instantiated with instance names vector [9] tO

vector [0].

Interfaces can be declared and instantiated in modules (either flat or hierarchical) but modules can neither be
declared nor instantiated in interfaces.

The simplest use of an interface is to bundle wires, asisillustrated in the examples bel ow.

19.2.1 Example without using interfaces

This example shows a simple bus implemented without interfaces. Note that the logic type can replace wire
and reg if no resolution of multiple driversis needed.

module memMod (input bit req,
bit clk,
bit start,
logic [1:0] mode,
logic [7:0] addr,

inout wire [7:0] data,
output bit gnt,
bit rdy);

logic avail;
endmodule

module cpuMod (

input bit clk,

bit gnt,

bit rdy,
inout wire [7:0] data,
output bit req,

bit start,

logic [7:0] addr,
logic [1:0] mode) ;

endmodule
module top;
logic req, gnt, start, rdy; // req is logic not bit here

Copyright 2004 Accellera. All rights reserved. 281

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

logic clk = 0;

logic [1:0] mode;
logic [7:0] addr;
wire [7:0] data;

memMod mem(req, clk, start, mode, addr, data, gnt, rdy);
cpuMod cpu(clk, gnt, rdy, data, req, start, addr, mode) ;

endmodule

19.2.2 Interface example using a named bundle

The simplest form of a SystemVerilog interface is a bundled collection of variables or nets. When an interface
is referenced as a port, the variables and nets in it are assumed to have ref and inout access, respectively.
Thefollowing interface example shows the basic syntax for defining, instantiating and connecting an interface.
Usage of the SystemVerilog interface capability can significantly reduce the amount of code required to model
port connections.

interface simple bus; // Define the interface
logic reqg, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
endinterface: simple bus

module memMod (simple bus a, // Access the simple bus interface
input bit clk);
logic avail;
// When memMod is instantiated in module top, a.req is the req
// signal in the sb_intf instance of the ’‘simple bus’ interface
always @ (posedge clk) a.gnt <= a.req & avail;
endmodule

module cpuMod (simple bus b, input bit clk);
endmodule
module top;

logic clk = 0;

simple bus sb_intf(); // Instantiate the interface

memMod mem(sb_intf, clk); // Connect the interface to the module instance

cpuMod cpu(.b(sb_intf), .clk(clk)); // Either by position or by name
endmodule

In the preceding example, if the same identifier, sb_int £, had been used to name the simple bus interface
in the memMod and cpuMod module headers, then implicit port declarations also could have been used to
instantiate the memMod and cpuMod modules into the top module, as shown bel ow.

module memMod (simple bus sb_intf, input bit clk);

endmodule

module cpuMod (simple bus sb_intf, input bit clk);

endmodule

282 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

module top;
logic clk = 0;

simple bus sb_intf () ;

memMod mem (.*); // implicit port connections
cpuMod cpu (.*); // implicit port connections
endmodule

19.2.3 Interface example using a generic bundle

A module header can be created with an unspecified interface reference as a place-hol der for an interface to be
selected when the module itself is instantiated. The unspecified interfaceis referred to as a“generic” interface
reference.

This generic interface reference can only be declared by using the list of port declaration style of reference. It
shall beillegal to declare such a generic interface reference using the old Verilog-1995 list of port style.

The following interface example shows how to specify a generic interface reference in a module definition.

// memMod and cpuMod can use any interface
module memMod (interface a, input bit clk);

endmodule
module cpuMod (interface b, input bit clk);
endmodule
interface simple bus; // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface: simple bus

module top;
logic clk = 0;

simple _bus sb_intf(); // Instantiate the interface
// Reference the sb_intf instance of the simple bus
// interface from the generic interfaces of the
// memMod and cpuMod modules
memMod mem (.a(sb_intf), .clk(clk));
cpuMod cpu (.b(sb_intf), .clk(clk));

endmodule

An implicit port cannot be used to reference a generic interface. A named port must be used to reference a
generic interface, as shown below.

module memMod (interface a, input bit clk);
endmodule

module cpuMod (interface b, input bit clk);

Copyright 2004 Accellera. All rights reserved. 283

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

endmodule
module top;
logic clk = 0;

simple bus sb _intf();

memMod mem (.*, .a(sb_intf)); // partial implicit port connections
cpuMod cpu (.*, .b(sb_intf)); // partial implicit port connections

endmodule

19.3 Ports in interfaces

One limitation of simple interfaces is that the nets and variables declared within the interface are only used to
connect to a port with the same nets and variables. To share an external net or variable, one that makes a con-
nection from outside of the interface as well as forming a common connection to all module ports that instanti-
ate the interface, an interface port declaration is required. The difference between nets or variables in the
interface port list and other nets or variables within the interface is that only those in the port list can be con-
nected externally by name or position when the interface is instantiated.

interface il (input a, output b, inout c);
wire d;
endinterface

Thewires a, b and ¢ can be individually connected to the interface and thus shared with other interfaces.

The following example shows how to specify an interface with inputs, allowing a wire to be shared between
two instances of the interface.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
endinterface: simple bus

module memMod (simple bus a); // Uses just the interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // a.req is in the ’simple bus’ interface
endmodule
module cpuMod (simple bus b) ;
endmodule
module top;

logic clk = 0;

simple bus sb_intfl(clk); // Instantiate the interface
simple bus sb_intf2(clk); // Instantiate the interface

memMod meml (.a(sb _intfl)); // Reference simple bus 1 to memory 1
cpuMod cpul (.b(sb_intfl));
memMod mem2 (.a(sb _intf2)); // Reference simple bus 2 to memory 2

284 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

cpuMod cpu2 (.b(sb_intf2));
endmodule
Note: Because the instantiated interface names do not match the interface names used in the memMod and

cpuMod modules, implicit port connections cannot be used for this example.

19.4 Modports

To restrict interface access within a module, there are modport lists with directions declared within the inter-
face. The keyword modport indicates that the directions are declared asif inside the module.

interface i2;
wire a, b, ¢, d;
modport master (input a, b, output c, d);
modport slave (output a, b, input c, d);

endinterface

In this example, the modport list name (master or slave) can be specified in the module header, where the
interface name selects an interface and the modport name selects the appropriate directional information for
the interface signal's accessed in the modul e header.
module m (i2.master 1i);
endmodule
module s (i2.slave 1i);
endmodule
module top;
i2 1();
mul(.i(1));
s u2(.i(i));
endmodule
The syntax of interface name.modport name reference name gives alocal name for a hierarchical
reference. Note that this can be generalized to any interface with a given modport name by writing inter-

face.modport name reference name.

Themodport list name (master or slave) can also be specified in the port connection with the module instance,
where themodport nameis hierarchical from the interface instance.

module m (i2 1i);
endﬁé&ule
module s (i2 1i);
endﬁé&ule
module top;

i2 i();

m ul(.1i(i.master));

s u2(.i(i.slave));
endmodule

Copyright 2004 Accellera. All rights reserved. 285

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

If aport connection specifies amodport list name in both the module instance and module header declaration,
then the two modport list names shall be identical.

In ahierarchically nested interface, the directions in amodport declaration can themselves be modport plus
name.

interface il;
interface 1i3;
wire a, b, c, d;
modport master (input a, b, output c, d);
modport slave (output a, b, input c, d);
endinterface
i3 chi(), ch2();
modport master2 (chl.master, ch2.master);
endinterface

All of the names used in amodport declaration shall be declared by the same interface asis the modport itself.
In particular, the names used shall not be those declared by another enclosing interface, and a modport declara-
tion shall not implicitly declare new ports. No hierarchical references shall be permitted within a modport.

The following interface declarations would beillegal:

interface i;
wire x, Vy;

interface illegal i;
wire a, b, c, d4d;
// %, y not declared by this interface
modport master (input a, b, x, output c, d, v);
modport slave (input a, b, x, output c, d, y);
endinterface : illegal i

illegal i chil(), ch2();
modport master2 (chl.master, ch2.master);
endinterface : i

interface illegal i;
// a, b, ¢, d not declared by this interface
modport master (input a, b, output c, d);
modport slave (output a, b, output c, d);
endinterface : illegal i

Note that if no modport is specified in the module header or in the port connection, then all the nets and vari-
ablesin the interface are accessible with direction inout or ref, asin the examples above.

19.4.1 An example of a named port bundle

This interface example shows how to use modports to control signal directions as in port declarations. It uses
the modport name in the module definition.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,

output gnt, rdy,
ref data) ;

286 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

modport master (input gnt, rdy, clk,
output reqg, addr, mode, start,
ref data) ;

endinterface: simple bus

module memMod (simple bus.slave a); // interface name and modport name
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface

endmodule

module cpuMod (simple bus.master b);

endﬁé&ule

module top;
logic clk = 0;
simple bus sb_intf(clk); // Instantiate the interface
initial repeat (10) #10 clk++;

memMod mem(.a(sb _intf)); // Connect the interface to the module instance
cpuMod cpu (.b(sb _intf));

endmodule

19.4.2 An example of connecting a port bundle

This interface example shows how to use modports to restrict interface signal access and control their direc-
tion. It uses the modport name in the modul e instanti ation.

interface simple bus (input bit clk); // Define the interface
logic reqg, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
ref data) ;

modport master (input gnt, rdy, clk,

output req, addr, mode, start,
ref data) ;

endinterface: simple bus

module memMod (simple bus a); // Uses just the interface name
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface
endmodule

Copyright 2004 Accellera. All rights reserved. 287

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

module cpuMod (simple bus b) ;
endmodule
module top;

logic clk = 0;

simple bus sb_intf (clk); // Instantiate the interface

initial repeat(10) #10 clk++;

memMod mem(sb_intf.slave); // Connect the modport to the module instance
cpuMod cpu(sb_intf.master) ;
endmodule

19.4.3 An example of connecting a port bundle to a generic interface

This interface example shows how to use modports to control signal directions. It shows the use of the inter-
face keyword in the module definition. The actual interface and modport are specified in the module instantia-
tion.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,

output gnt, rdy,
ref data) ;

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
ref data) ;

endinterface: simple bus

module memMod (interface a); // Uses just the interface
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface

endmodule
module cpuMod (interface D) ;
endﬁé&ule
module top;
logic clk = 0;
simple bus sb_intf (clk); // Instantiate the interface

memMod mem(sb_intf.slave); // Connect the modport to the module instance
cpuMod cpu(sb_intf.master) ;
endmodule

288 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

19.4.4 Modport expressions

A modport expression allows elements of arrays and structures, concatenations of elements, aggregate expres-
sions of elements declared in an interface to be included in a modport list. This modport expression is explic-
itly named with a port identifier, visible only through the modport connection.

Like explicitly named ports in a module port declaration, port identifiers exist in their own namespace for each
modport list. When modport item isjust asimple port identifier, that identifier is used as both areferenceto an
interface item and a port identifier. Once a port identifier has been defined, there shall not be another port def-
inition with this same name.

For example:
interface I;

logic [7:0] r;
const int x=1;

bit R;

modport A (output .P(r[3:0]), input .Q(x), R);

modport B (output .P(r[7:4]), input .Q(2), R);
endinterface

module M (interface 1i);,
initial 1.P = i.Q;
endmodule

module top;

I 1i1;

M ul (il1.A);

M u2 (i1.B);

initial #1 sdisplay("%b", il.r); // displays 00010010
endmodule

The self-determined type of the port expression becomes the type for the port. If the port expression isto be an
aggregate expression, then a cast must be used since self-determined aggregate expressions are not allowed.
The port expression must resolve to a legal expression for type of module port (See section 18.12—Port con-
nection rules). In the example above, the @ port could not be an output or inout because the port expressionisa
constant. The port expression is optional because ports can be defined that do not connect to anything internal
to the port.

19.4.5 Clocking blocks and modports

The modport construct can also be used to specify the direction of clocking blocks declared within an inter-
face. Aswith other modport declarations, the directions of the clocking block are those seen from the module
in which the interface becomes a port. The syntax for thisis shown below.

modport_declaration ::= modport modport_item { , modport_item} ; I/ from Annex A.2.9
modport_item ::= modport_identifier (modport_ports declaration { , modport_ports_declaration })
modport_ports declaration ::=
{ attribute_instance } modport_simple _ports declaration
| { attribute_instance } modport_hierarchical_ports declaration
| { attribute_instance } modport_tf_ports declaration
| { attribute_instance } modport_clocking_declaration

modport_clocking_declaration ::= clocking clocking_identifier

Syntax 19-2—modport clocking declaration syntax (excerpt from Annex A)

Copyright 2004 Accellera. All rights reserved. 289

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

All of the clocking blocks used in amodport declaration shall be declared by the same interface as is the
modport itself. Like al modport declarations, the direction of the clocking signals are those seen from the
module in which the interface becomes a port. The example below shows how modports can be used to create
both synchronous as well as asynchronous ports. When used in conjunction with virtual interfaces (see Section
19.8.2), these constructs facilitate the creation of abstract synchronous models.

interface A Bus(input bit clk);
wire req, gnt;
wire [7:0] addr, data;

clocking sb @ (posedge clk) ;
input gnt;
output req, addr;
inout data;

property pl; req ##[1:3] gnt; endproperty

endclocking
modport DUT (input clk, req, addr, // Device under test modport
output gnt,
inout data) ;
modport STB (clocking sb); // synchronous testbench modport
modport TB (input gnt, // asynchronous testbench modport

output req, addr,
inout data) ;
endinterface

The aboveinterface o Bus can then be instantiated as shown below:

module devl (A Bus.DUT D) ; // Some device: Part of the design
endﬁé&ule
module dev2 (A Bus.DUT D) ; // Some device: Part of the design
endﬁé&ule

module top;
bit clk;

A Bus bl(clk);
A Bus b2(clk);

devl di(bl);
dev2 d2(b2);

T tb(bl, b2);

endmodule
program T (A Bus.STB bl, A Bus.STB b2); // Testbench: 2 synchronous ports
assert property (bl.pl); // assert property from within program

initial begin
bl.sb.req <= 1;
wait(bl.sb.gnt == 1);

290 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

bl.sb.req <= 0;
b2.sb.req <= 1;
wait (b2.sb.gnt

Il
I
iy

b2.sb.req <= 0;
end
endprogram

The example above shows the program block using the synchronous interface designated by the clocking-
modport of interface ports b1 and b2. In addition to the procedural drives and samples of the clocking block
signals, the program asserts the property p1 of one of itsinterfacesb1.

19.5 Interfaces and specify blocks

The speci £y block is used to describe various paths across a modul e and perform timing checksto ensure that
events occurring at the module inputs satisfy the timing constraints of the device described by the module. The
module paths are from module input ports to output ports and the timing checks are relative to the module
inputs. The specify block refers to these ports as terminal descriptor. Module inout ports can function as
either an input or output terminal. When one of the port instances is an interface, each signa in the interface
becomes an available terminal, with the default direction as defined for an interface, or as restricted by a mod-
port. A ref port cannot be used as aterminal in a specify block.

The following shows an example of using interfaces together with a specify block:

interface itf;

logic c¢,q,d;

modport flop (input c,d, output q);
endinterface

module dtype (itf.flop ch);
always ff @(posedge ch.c) ch.g <= ch.d;

specify
(posedge ch.c => (ch.g+:ch.d)) = (5,6);
$setup(ch.d, posedge ch.c, 1);
endspecify
endmodule

19.6 Tasks and functions in interfaces

Tasks and functions can be defined within an interface, or they can be defined within one or more of the mod-
ules connected. This allows a more abstract level of modeling. For example “read” and “write” can be defined
as tasks, without reference to any wires, and the master module can merely call these tasks. In a modport
these tasks are declared as import tasks.

If amodule is connected to amodport containing an exported task or function, and the module does not define
that task or function, then an elaboration error shall occur. Similarly if the modport contains an exported task
or function prototype, and the task or function defined in the module does not exactly match that prototype,
then an elaboration error shall occur.

If the tasks or functions are defined in a module, using a hierarchical name, they must also be declared as
extern intheinterface, or as export in amodport.

Tasks (not functions) can be defined in a module that is instantiated twice, e.g. two memories driven from the
same CPU. Such multiple task definitions are allowed by a forkjoin extern declaration in the interface.

Copyright 2004 Accellera. All rights reserved. 291

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

19.6.1 An example of using tasks in an interface
interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

task masterRead (input logic [7:0] raddr); // masterRead method

//

endtask: masterRead

task slaveRead; // slaveRead method
//

endtask: slaveRead
endinterface: simple bus

module memMod (interface a); // Uses any interface
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail // the gnt and req signals in the interface

always @(a.start)
a.slaveRead;
endmodule

module cpuMod (interface D) ;
enum {read, write} instr;
logic [7:0] raddr;

always @ (posedge b.clk)

if (instr == read)
b.masterRead (raddr); // call the Interface method

endmodule
module top;
logic clk = 0;

simple bus sb_intf(clk); // Instantiate the interface

memMod mem (sb_intf) ;
cpuMod cpu(sb_intf) ;
endmodule

A function prototype specifies the types and directions of the arguments and the return value of a function
which is defined elsewhere. Similarly, atask prototype specifies the types and directions of the arguments of a
task which is defined elsewhere. In amodport, the import and export constructs can either use task or function

prototypes or use just the identifiers. The only exception is when amodport is used to import a function or task
from another module, in which case afull prototype shall be used.

The number and types of arguments in a prototype must match the argument types in the function or task dec-
laration. The rulesfor type equivalency are described in Section 5.8.1, Equivalent types.

19.6.2 An example of using tasks in modports

This interface example shows how to use modports to control signal directions and task access in a full read/

292 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001

write interface.

interface simple bus (input bit clk); // Define the interface

logic reqg, gnt;

logic [7:0] addr, data;
logic [1:0] mode;

logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
ref data,
import task slaveRead(),
task slaveWrite());
// import into module that uses the modport

modport master (input gnt, rdy, clk,
output reqg, addr, mode, start,
ref data,
import masterRead,
masterWrite) ;
// import into module that uses the modport

SystemVerilog 3.1a

task masterRead (input logic [7:0] raddr); // masterRead method

!/

endtask

task slaveRead; // slaveRead method

//
endtask

task masterWrite (input logic [7:0] waddr) ;

//. ..
endtask

task slaveWrite;
//. ..
endtask

endinterface: simple bus

module memMod (interface a); // Uses just the interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface

a.gnt <= a.req & avail; // the gnt and req signals in the interface

always @(a.start)
if (a.mode[0] == 1'Db0)
a.slaveRead;
else
a.slaveWrite;
endmodule

module cpuMod (interface D) ;
enum {read, write} instr = $rand();
logic [7:0] raddr = Srand();

always @ (posedge b.clk)
if (instr == read)

Copyright 2004 Accellera. All rights reserved.

293

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

b.masterRead(raddr); // call the Interface method

//
else
b.masterWrite (raddr) ;
endmodule

module omniMod(interface Db) ;
//. ..

endmodule: omniMod

module top;
logic clk = 0;

simple bus sb_intf (clk); // Instantiate the interface

memMod mem(sb_intf.slave); // only has access to the slave tasks

cpuMod cpu (sb_intf.master); // only has access to the master tasks

omniMod omni (sb_intf); // has access to all master and slave tasks
endmodule

19.6.3 An example of exporting tasks and functions

This interface example shows how to define tasks in one module and call them in another, using modports to
control task access.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave(input req, addr, mode, start, clk,
output gnt, rdy,
ref data,
export task Read(),
task Write());
// export from module that uses the modport

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
ref data,
import task Read (input logic [7:0] raddr),
task Write(input logic [7:0] waddr));
// import requires the full task prototype

endinterface: simple bus

module memMod (interface a); // Uses just the interface keyword
logic avail;

task a.Read; // Read method

avail = 0;
avail = 1;
endtask

task a.Write;
avail = 0;

294 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
avail = 1;
endtask
endmodule

module cpuMod (interface D) ;
enum {read, write} instr;
logic [7:0] raddr;

always @ (posedge b.clk)
if (instr == read)
b.Read(raddr); // call the slave method via the interface

else
b.Write (raddr) ;
endmodule

module top;
logic clk = 0;

simple bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave); // exports the Read and Write tasks
cpuMod cpu(sb_intf.master); // imports the Read and Write tasks
endmodule

19.6.4 An example of multiple task exports

It is normally an error for more than one module to export the same task name. However, several instances of
the same modport type can be connected to an interface, such as memory modulesin the previous example. So
that these can till export their read and write tasks, the tasks must be declared in the interface using the
extern forkjoin keywords.

Thecal to extern forkjoin task countslaves();intheexample below behavesas:

fork
top.meml.a.countslaves;
top.mem2.a.countslaves;
join

For aread task, only one module should actively respond to the task call, e.g. the one containing the appropri-
ate address. The tasksin the other modules should return with no effect. Only then should the active task write
to the result variables.

Note multiple export of functionsis not alowed, because they must always write to the result.
The effect of adisable on an extern forkjoin task is as follows:

— If the task is referenced viathe interface instance, all task calls shall be disabled.

— If the task is referenced via the module instance, only the task call to that module instance shall be dis-
abled.

— If an interface contains an extern forkjoin task, and no module connected to that interface defines the task,
then any call to that task shall report a run-time error and return immediately with no effect.

This interface example shows how to define tasks in more than one module and call them in another using
extern forkjoin. The multiple task export mechanism can also be used to count the instances of a particular
modport that are connected to each interface instance.

Copyright 2004 Accellera. All rights reserved. 295

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
int slaves = 0;

// tasks executed concurrently as a fork/join block
extern forkjoin task countSlaves() ;

extern forkjoin task Read (input logic [7:0] raddr);
extern forkjoin task Write (input logic [7:0] waddr) ;

modport slave (input req,addr, mode, start, clk,
output gnt, rdy,
ref data, slaves,
export Read, Write, countSlaves) ;
// export from module that uses the modport

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
ref data,

import task Read (input logic [7:0] raddr),
task Write (input logic [7:0] waddr)) ;
// import requires the full task prototype

initial begin

slaves = 0;

countSlaves;

Sdisplay ("number of slaves = %d", slaves);
end

endinterface: simple bus

module memMod # (parameter int minaddr=0, maxaddr=0;) (interface a);
logic avail = 1;
logic [7:0] mem[255:0];

task a.countSlaves() ;
a.slaves++;
endtask

task a.Read(input logic [7:0] raddr); // Read method
if (raddr >= minaddr && raddr <= maxaddr) begin

avail = 0;
#10 a.data = mem[raddr] ;
avail = 1;
end
endtask

task a.Write (input logic [7:0] waddr); // Write method
if (waddr >= minaddr && waddr <= maxaddr) begin

avail = 0;
#10 mem[waddr] = a.data;
avail = 1;
end
endtask
endmodule

module cpuMod (interface D) ;

296 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

typedef enum {read, write} instr;
instr inst;

logic [7:0] raddr;

integer seed;

always @ (posedge b.clk) begin

inst = instr’ ($dist uniform(seed, 0, 1));
raddr = $dist uniform(seed, 0, 3);
if (inst == read) begin

$display ("%t begin read %$h @ %h", S$time, b.data, raddr);
callr:b.Read (raddr) ;
Sdisplay ("%t end read %h @ %$h", $time, b.data, raddr);
end
else begin
$display ("%t begin write %$h @ %h", $time, b.data, raddr);
b.data = raddr;
callw:b.Write (raddr) ;
Sdisplay ("%t end write %$h @ %$h", Stime, b.data, raddr);
end
end
endmodule

module top;
logic clk = 0;

function void interrupt () ;
disable meml.a.Read; // task via module instance
disable sb_intf.Write; // task via interface instance

if (meml.avail == 0) $display ("meml was interrupted");
if (mem2.avail == 0) Sdisplay ("mem2 was interrupted") ;
endfunction

always #5 clk++;

initial begin
#28 interrupt () ;
#10 interrupt () ;
#100 S$finish;
end

simple bus sb intf (clk);

memMod # (0, 127) meml(sb_intf.slave) ;
memMod # (128, 255) mem2(sb_intf.slave) ;
cpuMod cpu(sb_intf.master) ;

endmodule

19.7 Parameterized interfaces

Interface definitions can take advantage of parameters and parameter redefinition, in the same manner as mod-
ule definitions. This example shows how to use parameters in interface definitions.

interface simple bus # (AWIDTH = 8, DWIDTH = 8)
(input bit clk); // Define the interface
logic req, gnt;
logic [AWIDTH-1:0] addr;
logic [DWIDTH-1:0] data;
logic [1:0] mode;

Copyright 2004 Accellera. All rights reserved. 297

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

logic start, rdy;

modport slave(input req, addr, mode, start, clk,
output gnt, rdy,
ref data,
import task slaveRead(),
task slaveWrite());
// import into module that uses the modport

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
ref data,
import task masterRead (input logic [AWIDTH-1:0] raddr),
task masterWrite (input logic [AWIDTH-1:0] waddr)) ;
// import requires the full task prototype

task masterRead (input logic [AWIDTH-1:0] raddr); // masterRead method
endééék
task slaveRead; // slaveRead method
endééék
task masterWrite (input logic [AWIDTH-1:0] waddr) ;
endééék
task slaveWrite;
endééék
endinterface: simple bus

module memMod (interface a); // Uses just the interface keyword
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; //the gnt and req signals in the interface

always @(a.start)
if (a.mode[0] == 1’Db0)
a.slaveRead;
else
a.slaveWrite;
endmodule

module cpuMod (interface D) ;
enum {read, write} instr;
logic [7:0] raddr;

always @ (posedge b.clk)
if (instr == read)
b.masterRead (raddr); // call the Interface method
//
else
b.masterWrite (raddr) ;
endmodule

298 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

module top;
logic clk = 0;

simple bus sb_intf (clk); // Instantiate default interface
simple bus #(.DWIDTH(16)) wide intf (clk); // Interface with 16-bit data

initial repeat (10) #10 clk++;

memMod mem(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu (sb_intf.master); // only has access to the masterRead task
memMod memW (wide intf.slave); // 16-bit wide memory
cpuMod cpuW (wide intf.master); // 16-bit wide cpu

endmodule

19.8 Virtual interfaces

Virtual interfaces provide a mechanism for separating abstract models and test programs from the actual sig-
nals that make up the design. A virtual interface allows the same subprogram to operate on different portions
of adesign, and to dynamically control the set of signals associated with the subprogram. Instead of referring
to the actual set of signalsdirectly, users are able to manipulate a set of virtual signals. Changes to the underly-
ing design do not require the code using virtual interfaces to be re-written. By abstracting the connectivity and
functionality of a set of blocks, virtual interfaces promote code-reuse.

A virtud interface is a variable that represents an interface instance. The syntax to declare a virtual interface
variableis given below.

virtual _interface declaration ::= // from Annex A.2.9
virtual [interface] interface identifier list_of virtua_interface decl ;
list_of virtual _interface decl ::= // from Annex A.2.3

variable identifier [= interface instance identifier |
{ , variable identifier [= interface instance identifier] }

data declaration®® ::= // from Annex A.2.1.3

| virtual_interface declaration
data type::= I/l fromAnnex A.2.2.1

| virtual [interface] interface_identifier

Syntax 19-3—uvirtual interface declaration syntax (excerpt from Annex A)

Virtual interface variables can be passed as arguments to tasks, functions, or methods. A single virtual inter-
face variable can thus represent different interface instances at different times throughout the simulation. A
virtual interface must be initialized before it can be used; it hasthe value nu11 beforeit isinitialized. Attempt-
ing to use an uninitialized virtual interface shall result in afatal run-time error.

Only the following operations are directly allowed on virtual interface variables:
— Assignment (=) to:

— another virtual interface of the same type

— aninterface instance of the same type

— the special constant null

Copyright 2004 Accellera. All rights reserved. 299

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

— Equality (==) and inequality (1 =) with:
— another virtual interface of the same type
— aninterface instance of the same type

— the special constant null

Virtual interfaces shall not be used as ports, interface items, or as members of unions.

Once a virtual interface has been initialized, all the components of the underlying interface instance are
directly available to the virtual interface viathe dot notation. These components can only be used in procedural
statements; they cannot be used in continuous assignments or sensitivity lists. In order for anet to be driven via
avirtual interface, the interface itself must provide a procedural means to do so. This can be accomplished
either via a clocking block or by including a driver that is updated by a continuous assignment from a variable
within the interface.

Virtual interfaces can be declared as class properties, which can be initialized procedurally or by an argument
to new (). This allows the same virtual interface to be used in different classes. The following example shows
how the same transactor class can be used to interact with various different devices.

interface SBus; // A Simple bus interface
logic req, grant;
logic [7:0] addr, data;

endinterface
class SBusTransctor; // SBus transactor class
virtual SBus bus; // virtual interface of type Sbus

function new(virtual SBus s);
bus = s; // initialize the virtual interface
endfunction

task request () ; // request the bus
bus.req <= 1'bl;
endtask

task wait for bus(); // wait for the bus to be granted
@ (posedge bus.grant) ;
endtask
endclass

module devA(Sbus s) ... endmodule // devices that use SBus
module devB(Sbus s) ... endmodule

module top;

SBus s[1:4] (); // instantiate 4 interfaces
devA al(s[1]); // instantiate 4 devices
devB bl (s[2]);

devA a2(s[3]);

devB b2 (s[4]);

initial begin
SbusTransactor t[1:4]; // create 4 bus-transactors and bind

t[1] new(s[1]);
t[2] = new(s[2]);

300 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

t[3] = new(s[3]);
t[4] = new(s[4]);
// test t[1l:4]
end
endmodule

In the preceding example, the transaction class sbusTransctor isasimple reusable component. It iswritten
without any global or hierarchical references, and is unaware of the particular device with which it will inter-
act. Nevertheless, the class can interact with any number of devices (4 in the example) that adhere to the inter-
face's protocol.

19.8.1 Virtual interfaces and clocking blocks

Clocking blocks and interfaces can be combined to represent the interconnect between synchronous blocks.
Moreover, because clocking blocks provide a procedural mechanism to assign values to both nets and vari-
ables, they are ideally suited to be used by virtua interfaces. For example:

interface SyncBus(input bit clk);
wire a, b, c;

clocking sb @(posedge clk) ;
input a;
output b;
inout c;

endclocking

endinterface
typedef virtual SyncBus VI; // A virtual interface type

task do_it(VI v); // handles any SyncBus via clocking sb
if(v.sb.a ==)
v.sb.b <= 0;
else
v.sb.c <= ##1 1;
endtask

In the preceding example, interface syncBus includes a clocking block, which isused by task do_it to ensure
synchronous access to the interface’s signals: a, b, and c. Note that changes to the storage type of the interface
signals (from net to variable and vice-versa) requires no changes to the task. The interfaces can be instantiated
as shown below.

module top;
bit clk;

SyncBus bl(clk);
SyncBus b2 (clk);

initial begin

VI v[2] = { b1, b2 };
repeat (20)
do it(v[$urandom range(0, 1) 1);
end
endmodule

The top module above shows how a virtual interface can be used to randomly select among a set of interfaces
to be manipulated, in this case by the do_it task.

Copyright 2004 Accellera. All rights reserved. 301

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

19.8.2 Virtual interfaces modports and clocking blocks

As shown in the example above, once avirtual interface is declared, its clocking block can be referenced using
dot-notation. However, this only works for interfaces with no modports. Typically, a device under test and its
testbench exhibit modport direction. This common case can be handled by including the clocking in the corre-
sponding modport as described in Section 19.4.5.

The example below shows how modports used in conjunction with virtual interfaces facilitate the creation of
abstract synchronous models.

interface A Bus(input bit clk);
wire req, gnt;
wire [7:0] addr, data;

clocking sb @ (posedge clk) ;
input gnt;
output req, addr;
inout data;

property pl; req ##[1:3] gnt; endproperty

endclocking
modport DUT (input clk, req, addr, // Device under test modport
output gnt,
inout data);
modport STB (clocking sb); // synchronous testbench modport
modport TB (input gnt, // asynchronous testbench modport

output req, addr,
inout data) ;
endinterface

The aboveinterface o_Bus can then be instantiated as shown below:

module devl (A Bus.DUT D) ; // Some device: Part of the design
endﬁé&ule

module dev2 (A Bus.DUT Db); // Some device: Part of the design
endﬁé&ule

program T (A Bus.STB bl, A Bus.STB b2); // Testbench: 2 synchronous ports
endpro§¥;m

module top;
bit clk;

A Bus bl(clk);
A Bus b2(clk);

devl di(bl);
dev2 d2(b2);

T tb(bl, b2);
endmodule

302 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

And, within the testbench program, the virtual interface can refer directly to the clocking block.
program T (A Bus.STB bl, A Bus.STB b2); // Testbench: 2 synchronous ports
typedef virtual A Bus.STB SYNCTB;

task request(SYNCTB s);
s.sb.req <= 1;
endtask

task wait grant(SYNCTB s);
wait(s.sb.gnt == 1);
endtask

task drive (SYNCTB s, logic [7:0] adr, data);

if(s.sb.gnt == 0) begin
request (s) ; // acquire bus if needed
wait grant (s) ;

end

s.sb.addr = adr;

s.sb.data = data;

repeat (2) @s.sb;

s.sb.req = 0; //release bus
endtask
assert property (bl.pl); // assert property from within program

initial begin
drive(bl, S$random, S$Srandom) ;
drive(b2, S$random, S$random) ;
end
endprogram

The example above shows how the clocking block is referenced viathe virtual interface by the tasks within the
program block.

19.9 Access to interface objects

Access to all objects declared in an interface is always available by hierarchical reference, regardiess of
whether or not the interface is connected through a port. When an interface is connected with a modport in
either the module header or port connection, access by port reference is limited to only those objects listed in
the modport, for only those types of objectslegal to be listed in modports (nets, variables, tasks, and functions)
All objects are still visible by hierarchical reference. For example:

interface ebus i;

integer I; // reference to I not allowed through modport mp
typedef enum {Y,N} choice;
choice Q;
parameter True = 1;
modport mp (input Q) ;
endinterface

module Top;

ebus i ebus;

sub sl (ebus.mod) ;
endmodule

module sub (interface.mp 1i);

Copyright 2004 Accellera. All rights reserved. 303

SystemVerilog 3.1a

304

typedef i.choice yes no;
yes _no P;
assign P = i.Q;
initial
Top.sl.Q = i.True;
initial
Top.sl.I

0;

endmodule

//
//
//

//
!/

Accellera
Extensionsto Verilog-2001

import type from interface
refer to Q with a port reference
refer to Q with a hierarchical reference

referring to i.I would not be legal because
is not in modport mp

Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 20
Coverage

20.1 Introduction (informative)

Functional verification comprises a large portion of the resources required to design and validate a complex
system. Often, the validation must be comprehensive without redundant effort. To minimize wasted effort,
coverage is used as a guide for directing verification resources by identifying tested and untested portions of
the design.

Coverage is defined as the percentage of verification objectives that have been met. It is used as a metric for
evaluating the progress of a verification project in order to reduce the number of simulation cycles spent in
verifying a design

Broadly speaking, there are two types of coverage metrics. Those that can be automatically extracted from the
design code, such as code coverage, and those that are user-specified in order to tie the verification environ-
ment to the design intent or functionality. This latter form is referred to as Functional Coverage, and is the
topic of this section.

Functional coverage is a user-defined metric that measures how much of the design specification, as enumer-
ated by features in the test plan, has been exercised. It can be used to measure whether interesting scenarios,
corner cases, specification invariants, or other applicable design conditions—captured as features of the test
plan—have been observed, validated and tested.

The key aspects of functional coverage are:
— Itisuser-specified, and is not automatically inferred from the design

— It is based on the design specification (i.e., its intent) and is thus independent of the actual design code or
its structure.

Sinceit is fully specified by the user, functional coverage requires more up front effort (someone has to write
the coverage model). Functional coverage also requires a more structured approach to verification. Although
functional coverage can shorten the overall verification effort and yield higher quality designs, these shortcom-
ings can impede its adoption.

The SystemVerilog functional coverage extensions address these shortcomings by providing language con-
structs for easy specification of functional coverage models. This specification can be efficiently executed by
the SystemVerilog simulation engine, thus, enabling coverage data manipulation and analysis tools that speed
up the development of high quality tests. The improved set of tests can exercise more corner cases and required
scenarios, without redundant work.

The SystemVerilog functional coverage constructs enable:

— Coverage of variables and expressions, as well as cross coverage between them.
— Automatic as well as user-defined coverage bins.

— Associate bins with sets of values, transitions, or cross products.

— Filtering conditions at multiple levels.

— Events and sequences to automatically trigger coverage sampling.

— Procedural activation and query of coverage.

— Optiona directives to control and regulate coverage.

Copyright 2004 Accellera. All rights reserved. 305

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001

20.2 Defining the coverage model: covergroup

The covergroup construct encapsul ates the specification of a coverage model. Each covergroup specification
can include the following components:

A clocking event that synchronizes the sampling of coverage points
A set of coverage points

Cross coverage between coverage points

Optional formal arguments

Coverage options

The covergroup construct is a user-defined type. The type definition is written once, and multiple instances
of that type can be created in different contexts. Similar to a class, once defined, a covergroup instance can
be created viathenew () operator. A covergroup can be defined in amodule, program, interface, or class.

covergroup_declaration ::= I/ from Annex A.2.11

coverage_spec_or_option ::=

coverage_option ::=

coverage_Sspec ::=

coverage event ::=

block_event_expression :: =

hierarchical_btf identifier :: =

variable decl_assignment ::= I/ from Annex A.2.4

16. It shall belegal to omit the covergroup_variable_identifer from a covergroup instantiation only if thisimplicit instan-
tiation is within a class that has no other instantiation of the covergroup.

cover group covergroup_identifier [([tf_port_list])] [coverage event] ;
{ coverage spec_or_option ; }
endgroup [: covergroup_identifier]

{attribute _instance} coverage spec
| {attribute_instance} coverage option ;

option.member_identifier = expression
| type _option.member_identifier = expression

cover_point
| cover_cross

clocking_event
| @@(block_event_expression)

block _event_expression or block_event_expression
| begin hierarchical_btf_identifier
| end hierarchical_btf identifier

hierarchical_tf_identifier

| hierarchical_block identifier
| hierarchical _identifier [class_scope] method_identifier

| [covergroup_variable identifier] = new [(list_of arguments)]16

Syntax 20-1—Covergroup syntax (excerpt from Annex A)

Theidentifier associated with the covergroup declaration defines the name of the coverage model. Using this
name, an arbitrary number of coverage model instances can be created. For example:

306 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

covergroup cg; ... endgroup
cg cg_inst = new;

The above example defines a covergroup named cg. An instance of cg is declared as cg_inst and created
using the new operator.

A covergroup can specify an optional list of arguments. When the covergroup specifies a list of formal
arguments, its instances must provide to the new operator al the actual arguments that are not defaulted.
Actual arguments are evaluated when the new operator is executed. A ref argument allows a different variable
to be sampled by each instance of a covergroup. Input arguments will not track value of their arguments;
they will use the value passed to the new operator.

If aclocking event is specified, it defines the event at which coverage points are sampled. If the clocking event
is omitted, users must procedurally trigger the coverage sampling. This is done via the built-in sample ()
method (see Section 20.7). Optionally, the strobe option can be used to modify the sampling behavior. When
the strobe option is not set (the default), a coverage point is sampled the instant the clocking event takes place,
asif the process triggering the event were to call the built-in sample () method. If the clocking event occurs
multiple times in atime step, the coverage point will also be sampled multiple times. The strobe option (see
Section 20.6.1) can be used to specify that coverage points are sampled in the postponed region, thereby filter-
ing multiple clocking events so that only one sample per time dot is taken.

As an alternative to a clocking event, a coverage group accepts a block event expression to indicate that the
coverage sampleis to be triggered by the start or the end of execution of a given named block, task, function,
or class method. Block event expressions that specify the begin keyword followed by a hierarchical identifier
denoting a named block, task, function, or class method shall be triggered immediately before the correspond-
ing block, task, function, or method begins executing its first statement. Block event expressions that specify
the end keyword followed by a hierarchical identifier denoting a named block, task, function, or class method
shall be triggered immediately after the corresponding block, task, function, or method executes its last state-
ment. Block event expressions that specify the end of execution shall not be triggered if the block, task, func-
tion, or method is disabled.

A covergroup Can contain one or more coverage points. A coverage point can be a variable or an expression.
Each coverage point includes a set of bins associated with its sampled values or its value-transitions. The bins
can be explicitly defined by the user or automatically created by the tool. Coverage points are discussed in
detail in Section 20.4.

enum { red, green, blue } color;

covergroup gl @ (posedge clk) ;
c: coverpoint color;
endgroup

The above example defines coverage group g1 with a single coverage point associated with variable color. The
value of the variable color is sampled at the indicated clocking event: the positive edge of signal clk. Since the
coverage point does not explicitly define any bins, the tool automatically creates 3 bins, one for each possible
value of the enumerated type. Automatic bins are described in Section 20.4.2.

A coverage group can also specify cross coverage between two or more coverage points or variables. Any
combination of more than two variables or previously declared coverage pointsis alowed. For example:

enum { red, green, blue } color;
bit [3:0] pixel adr, pixel offset, pixel hue;

covergroup g2 @ (posedge clk) ;
Hue: coverpoint pixel hue;

Offset: coverpoint pixel offset;

AxC: cross color, pixel adr; // cross 2 variables (implicitly declared
// coverpoints)

Copyright 2004 Accellera. All rights reserved. 307

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001
all: cross color, Hue, Offset; // cross 1 variable and 2 coverpoints
endgroup

The example above creates coverage group g2 that includes 2 coverage points and two cross coverage items.
Explicit coverage points labeled of fset and Hue are defined for variablespixel offset and pixel hue.
SystemVerilog implicitly declares coverage points for variables color and pixel adr in order to track their
cross coverage. Implicitly declared cover points are described in Section 20.5.

A coverage group can also specify one or more options to control and regulate how coverage datais structured
and collected. Coverage options can be specified for the coverage group as a whole, or for specific items
within the coverage group, that is, any of its coverage points or crosses. In general, a coverage option specified
at the covergroup level appliesto all of itsitems unless overridden by them. Coverage options are described
in Section 20.6.

20.3 Using covergroup in classes

By embedding a coverage group within a class definition, the covergroup provides a simple way to cover a
subset of the class properties. This integration of coverage with classes provides an intuitive and expressive
mechanism for defining the coverage model associated with a class. For example,

In class xyz, defined below, membersm_x and m_y are covered using an embedded covergroup:

class xyz;
bit [3:0] m x;
int m_y;
bit m_z;

covergroup covl @m z; // embedded covergroup
coverpoint m x;
coverpoint m y;

endgroup

function new(); covl = new; endfunction
endclass

In this example, datamembersm_x and m_vy of class xyz are sampled on every change of data member m_z.

When a covergroup is defined within a class, and no explicit variables of that covergroup are declared in
the class then a variable with the same name as the coverage group is implicitly declared, e.g, in the above
example, a variable cov1 (of the embedded coverage group) is implicitly declared. Whether the coverage
group variable is implicitly or explicitly declared, each class contains exactly one variable of each embedded
coverage group. Each embedded coverage group thus becomes part of the class, tightly binding the class prop-
erties to the coverage definition. Declaring multiple variables of the same embedded coverage group shall
result in acompiler error.

An embedded covergroup can define a coverage model for protected and local class properties without any
changes to the class data encapsulation. Class members can become coverage points or can be used in other
coverage constructs, such as conditional guards or option initialization.

A class can have more than one covergroup. The following example shows two cover groupsin class mMc.

class MC;
logic [3:0] m x;
local logic m z;
bit m e;
covergroup cvl @(posedge clk); coverpoint m x; endgroup
covergroup Cv2 @m_e ; coverpoint m_z; endgroup
endclass

308 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

In covergroup cvi, public class member variablem_x is sampled at every positive edge of signal c1k. Local
class member m_z is covered by another covergroup cv2. Each coverage groupsis sampled by a different
clocking event.

An embedded coverage group must be explicitly instantiated in the new method. If it is not, then the coverage
group is not created and no data will be sampled.

Below is an example of an embedded coverage group that does not have any passed-in arguments, and uses
explicit instantiation to synchronize with another object:

class Helper;
int m _ev;
endclass

class MyClass;
Helper m obj;
int m_a;
covergroup Cov @(m_obj.m ev);
coverpoint m a;
endgroup

function new() ;
m _obj = new;

Cov = new; // Create embedded covergroup after creating m_obj
endfunction
endclass

In this example, covergroup Cov is embedded within class Myclass, which contains an object of type
Helper class, caled m_obj. The clocking event for the embedded coverage group refers to data member
m_ev Of m_ob7j. Because the coverage group cov UuseSm_obj, m_obj must be instantiated before cov. There-
fore, the coverage group cov isinstantiated after instantiatingm_ob3j in the class constructor. As shown above,
the instantiation of an embedded coverage group is done by assigning the result of the new operator to the cov-
erage group identifier.

The following example shows how arguments passed in to an embedded coverage group can be used to set a
coverage option of the coverage group.

class C1;
bit [7:0] x;

covergroup cv (int arg) @ (posedge clk);

option.at least = arg;
coverpoint x;
endgroup

function new(int pl);
cv = new(pl);
endfunction
endclass

initial begin
Cl obj = new(4);
end

20.4 Defining coverage points

A covergroup Can contain one or more coverage points. A coverage point can be an integral variable or an

Copyright 2004 Accellera. All rights reserved. 309

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

integral expression. Each coverage point includes a set of bins associated with its sampled values or its value-
transitions. The bins can be explicitly defined by the user or automatically created by SystemVerilog. The syn-
tax for specifying coverage pointsis given below.

cover_point ;:= /[from Annex A.2.11
[cover_point_identifer :] coverpoint expression [iff (expression)] bins_or_empty
bins or_empty ::=
{ {attribute_instance} { bins_or_options; } }
|
bins_or_options ::=
coverage_option
| [wildcard] bins_keyword bin_identifier [[[expression]]] ={ range list} [iff (expression)]
| [wildcard] bins_keyword bin_identifier [[]] = trans_list [iff (expression)]
| bins_keyword bin_identifier [[[expression]]] = default [iff (expression)]
| bins_keyword bin_identifier = default sequence [iff (expression)]
bins keyword::=bins|illegal_bins|ignore_bins
range list ::= value range{ , value range}
value range ::= // from Annex A.8.3
expression
| [expression : expression |

Syntax 20-2—coverpoint syntax (excerpt from Annex A)

A coverage point creates a hierarchical scope, and can be optionally labeled. If the label is specified then it
designates the name of the coverage point. This name can be used to add this coverage point to a cross cover-
age specification, or to access the methods of the coverage point. If the label is omitted and the coverage point
is associated with a single variable then the variable name becomes the name of the coverage point. Otherwise,
an implementation can generate a name for the coverage point only for the purposes of coverage reporting, that
is, generated names cannot be used within the language.

A coverage point can sample the values that correspond to a particular scheduling region (see Section 14) by
specifying a clocking block signal. Thus, a coverage point that denotes a clocking block signal will sample the
values made available by the clocking block. If the clocking block specifies a skew of #1step, the coverage
point will sample the signal values from the Preponed region. If the clocking block specifies a skew of #0, the
coverage point will sample the signal values from the Observe region.

The expression within the i ££ construct specifies an optional condition that disables coverage for that cover
point. If the guard expression evaluates to false at a sampling point, the coverage point is ignored. For exam-

ple:

covergroup d4;
coverpoint s0 iff (!reset);
endgroup

In the preceding example, cover point so is covered only if the value reset isfase.

A coverage-point bin associates a name and a count with a set of values or a sequence of value transitions. If
the bin designates a set of values, the count is incremented every time the coverage point matches one of the
valuesin the set. If the bin designates a sequence of value transitions, the count is incremented every time the
coverage point matches the entire sequence of value transitions.

The bins for a coverage point can be automatically created by SystemVerilog or explicitly defined using the
bins construct to name each bin. If the bins are not explicitly defined, they are automatically created by Sys-
temVerilog. The number of automatically created bins can be controlled using the auto _bin_max coverage
option. Coverage options are described in Section 20.6.

310 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Thebins construct allows creating a separate bin for each value in the given range-list, or asingle bin for the
entire range of values. To create a separate bin for each value (an array of bins) the square brackets, [1, must
follow the bin name. To create a fixed number of bins for a set of values, a number can be specified inside the
square brackets. The range_list used to specify the set of values associated with a bin shall be constant expres-
sions, instance constants (for classes only) or non-re £ arguments to the coverage group.

If afixed number of binsis specified, and that number is smaller than the number of valuesin the bin then the
possible bin values are uniformly distributed among the specified bins. If the number of valuesis not divisible
by the number of bins then the last bin will include the remaining items. For example:

bins fixed [3] = {1:10};

The 11 possible values are distributed as follows: <1,2,3>, <4,5,6>, <7,8,9,10>. If the number of bins exceeds
the number of values then some of the binswill be empty.

The expression within the i ££ construct at the end of a bin definition provides aper-bin guard condition. If the
expression isfalse at a sampling point, the count for the bin is not incremented.

The default specification defines abin that is associated with none of the defined value bins. The default
bin catches the values of the coverage point that do not lie within any of the defined bins. However, the cover-
age calculation for a coverage point shall not take into account the coverage captured by the default bin. The
default is useful for catching unplanned or invalid values. The default sequence form can be used to catch
all transitions (or sequences) that do not lie within any of the defined transition bins (see Section 20.4.1). The
default sequence Specification does not accept multiple transition bins (the [1 notation is not allowed).

bit [9:0] v_a;

covergroup cg @ (posedge clk);
coverpoint v _a
{

bins a = { [0:63],65 };
bins b[] = { [127:150],[148:191] }; // note overlapping values

bins c[] = { 200,201,202 };
bins d = { [1000:8] };
bins others[] = default;
}
endgroup

In the example above, the first bins construct associates bin a with the values of variable v_a between 0 and
63, and the value 65. The second bins construct creates a set of 65 binsb[127],b[128]1,...b[191]. Like-
wise, thethird bins construct creates 3 bins: ¢ [200], ¢ [201], and ¢ [202]. The fourth bins construct asso-
ciates bin d with the values between 1000 and 1023 ($ represents the maximum value of v_a). Every value that
doesnot match binsa, b[1, c[1, or d[] isadded into its own distinct bin.

A default Or default sequence hin specification cannot be explicitly ignored (see Section 20.4.4). It shall
be an error for bins designated as ignore bins t0 also specify adefault Or default sequence.

Generic coverage groups can be written by passing their traits as arguments to the constructor. For example:
covergroup gc (ref int ra, int low, int high) @(posedge clk) ;

coverpoint ra // sample variable passed by reference

{

bins good = { [low : high] };
bins bad[] = default;

}

endgroup

Copyright 2004 Accellera. All rights reserved. 311

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

int va, vb;

cg cl = new(va, 0, 50); // cover variable va in the range 0 to 50
cg c2 = new(vb, 120, 600); // cover variable vb in the range 120 to 600

The example above defines a coverage group, gc, in which the signal to be sampled as well as the extent of the

coverage hins are specified as arguments. Later, two instances of the coverage group are created; each instance
samples a different signal and covers a different range of values.

20.4.1 Specifying bins for transitions

The syntax for specifying transition bins accepts a subset of the sequence syntax described in Section 17:

bins_or_options ::= /l from Annex A.2.11

| [wildcard] bins_keyword bin_identifier [[[expression]]] ={ range list} [iff (expression)]
| [wildcard] bins_keyword bin_identifier [[]] = trans list [iff (expression)]

bins_keyword::= bins|illegal_bins]ignore bins
range list ::= value range{ , value range}
trans list ::=(trans set) { , (trans_set) }
trans_set ::=trans range list => trans range list { => trans range list}
trans range list ::=
trans_item
| trans_item [[* repeat_range] |
| trans_item [[repeat_range]]
| trans_item [[= repeat_range]]
trans_item ::=range list
repeat_range ::=
expression
| expression : expression

Syntax 20-3—Transition bin syntax (excerpt from Annex A)

A trans_list specifies one or more sets of ordered value transitions of the coverage point. A single value transi-
tion isthus specified as:

valuel => value2

It represents the value of coverage point at two successive sample points, that is, value1 followed by value2
at the next sample point.

A sequence of transitionsis represented as:
valuel => value3d => value4 => valueb

In this case, valuel isfollowed by value3, followed by value4 and followed by values. A sequence can
be of any arbitrary length.

A set of transitions can be specified as:

range listl => range list2

312 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

This specification expands to transitions between each value in range list1l and each vaue in
range list2. For example,

1,5 => 6, 7
specifies the following four transitions:

1=>6, 1=>7, 5=>6, 5=>7
Consecutive repetitions of transitions are specified using (see Annex H):

trans_item [* repeat_ range]
Here, trans_itemis repeated for repeat_range times. For example,

3 [* 5]
isthe same as

3=>3=>3=>3=>3
An example of arange of repetition is:

3 [* 3:5]
isthe same as

3=>3=>3, 3=>3=>3=>3, 3=>3=>3=>3=>3
The repetition with non-consecutive occurrence of avalue is specified using: trans_item [-> repeat_range] .
Here, the occurrence of avalue is specified with an arbitrary number of sample points where the value does not
occur. For example,

3 [-> 3]
isthesame as

.3=>...=53...=53

wherethedots (. . .) represent any transition that does not contain the value 3.
Non-consecutive repetition is where a sequence of transitions continues until the next transition. For example,

3 [= 2]
is same as the transitions bel ow excluding the last transition.

3=>...=>3...=>3
A trans list specifies one or more sets of ordered value transitions of the coverage point. If the sequence of
value transitions of the coverage point matches any complete sequence in the trans _list, the coverage count of
the corresponding bin isincremented. For example:

bit [4:1] v_a;

covergroup cg @ (posedge clk);

coverpoint v _a

{

bins sa = (4 => 5 => 6), ([7:9]1,10=>11,12);

Copyright 2004 Accellera. All rights reserved. 313

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

bins sb[] = (4=> 5 => 6), ([7:9],10=>11,12);
bins allother = default sequence ;

}

endgroup

The example above defines two transition coverage bins. The first bins construct associates the following
sequences with bin sa: 4=>5=>6, or 7=>11, 8=>11, 9=>11, 10=>11, 7=>12, 8=>12, 9=>12, 10=>12. The sec-
ond bins construct associates an individual bin with each of the above sequences. sb[4=>5=>6], ...,
sb[10=>12]. The bin allother tracks all other transitions that are not covered by the other bins: sa and sb.

Transitions that specify sequences of unbounded or undetermined varying length cannot be used with the mul-
tiple bins construct (the [1 notation). For example, the length of the transition: 3 [=21, which uses hon-consec-
utive repetition, is unbounded and can vary during simulation. An attempt to specify multiple bins with such
sequences shall result in an error.

20.4.2 Automatic bin creation for coverage points

If a coverage point does not define any bins, SystemVerilog automatically creates state bins. This provides an
easy-to-use mechanism for binning different values of a coverage point. Users can either let the tool automati-
cally create state bins for coverage points or explicitly define named bins for each coverage point.

When the automatic bin creation mechanism is used, SystemVerilog creates N bins to collect the sampled val-
ues of a coverage point. The value N is determined as follows:

— For an enum coverage point, N is the cardinality of the enumeration.

— For any other integral coverage point, N is the minimum of 2M and the value of the auto_bin_max option,
where M is the number of bits needed to represent the coverage point.

If the number of automatic binsis smaller than the number of possible values (N < 2M) then the 2M values are
uniformly distributed in the N bins. If the number of values, 2M,is not divisible by N, then the last bin will
include the additional (up to N-1) remaining items. For example, if M is 3, and N is 3 then the 8 possible values
are distributed as follows. <0:1> ,<2:3>,<4,5,6,7>.

Automatically created bins only consider 2-state values; sampled values containing x or z are excluded.

SystemVerilog implementations can impose a limit on the number of automatic bins. See the Section 20.6 for
the default value of auto_bin_max.

Each automatically created bin will have a name of the form: auto [value]l, wherevalueis either asingle

coverage point value, or the range of coverage point values included in the bin—in the form low:high. For
enumerated types, value is the named constant associated with a particular enumerated value.

20.4.3 Wildcard specification of coverage point bins
By default, a value or transition bin definition can specify 4-state values. When a bin definition includes an x
or z, it indicates that the bin count should only be incremented when the sampled value has an x or z in the
same bit positions, i.e., the comparison is done using ===. Thewildcard bins definition causesal x, z, or ?
to be treated as wildcards for 0 or 1 (similar to the =?= operator). For example:

wildcard bins gl2 16 = { 4'bl1l?? };
The count of bing12_16 isincremented when the sampled variable is between 12 and 16:

1100 1101 1110 1111

Similarly, transition bins can definewildcard bins. For example:

wildcard bins TO 3 = (2'b0x => 2'blx);

314 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

The count of transition bin To_3 isincremented for the following transitions (asif by (0, 1=>2,3)):
00 => 10 00 => 11 01 => 10 01 => 11
A wildcard bin definition only consider 2-state values, sampled values containing x or z are excluded. Thus,

the range of values covered by awildcard bin is established by replacing every wildcard digit by 0 to compute
the low bound and 1 to compute the high bound.

20.4.4 Excluding coverage point values or transitions

A set of values or transitions associated with a coverage-point can be explicitly excluded from coverage by
specifying them as ignore_bins. For example:

covergroup cg23;
coverpoint a

{

ignore bins ignore vals = {7,8};
ignore bins ignore trans = (1=>3=>5);
}
endgroup

All values or transitions associated with ignored bins are excluded from coverage. Ignored values or transitions
are excluded even if they are also included in another bin.

20.4.5 Specifying lllegal coverage point values or transitions

A set of values or transitions associated with a coverage-point can be marked as illegal by specifying them as
illegal bins. For example:

covergroup cg3;
coverpoint b
{
illegal bins bad vals = {1,2,3};
illegal bins bad trans = (4=>5=>6);
}

endgroup

All values or transitions associated with illegal bins are excluded from coverage. If they occur, arun-time error
isissued. lllegal bins take precedence over any other bins, that is, they will result in a run-time error even if
they are also included in another bin.

20.5 Defining cross coverage

A coverage group can specify cross coverage between two or more coverage points or variables. Cross cover-
age is specified using the cross construct. When a variable V is part of a cross coverage, SystemVerilog
implicitly creates a coverage point for the variable, asif it had been created by the statement coverpoint V;.
Thus, a cross involves only coverage points. Expressions cannot be used directly in a cross; a coverage point
must be explicitly defined first.

The syntax for specifying cross coverage is given below.

Copyright 2004 Accellera. All rights reserved. 315

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Cover Cross:.= /l from Annex A.2.11
[cover point_identifer :] crosslist_of coverpoints| iff (expression)] select_bins or_empty
list_of coverpoints::=cross item, cross item{ , cross item}
cross item::=
cover_point_identifier
| variable identifier
select_bins or_empty ::=
{ { bins_selections _or_option ; } }
|
bins_selection_or_option ::=
{ attribute_instance } coverage option
| { attribute_instance} bins_selection
bins_selection ::= bins_keyword bin_identifier = select_expression [iff (expression)]
select_expression ::=
select_condition
| ! select_condition
| select_expression & & select_expression
| select_expression || select_expression
| (select_expression)
select_condition ::= binsof (bins_expression) [intersect { open_range list }]
bins expression ::=
variable identifier
| cover_point_identifier [. bins_identifier]
open_range list ::= open_value range{ , open_value range}

open_value range ::=val ue_range21

Syntax 20-4—Cross coverage syntax (excerpt from Annex A)

The label for a cross declaration provides an optional name. The label also creates a hierarchical scope for the
bins defined within the cross.

The expression within the optional i££ provides a conditional guard for the cross coverage. If at any sample
point, the condition evaluates to false, the cross coverage is ignored. The expression within the optional iff
construct at the end of a cross bin definition provides a per-bin guard condition. If the expression is false, the
cross bin isignored.

Cross coverage of aset of N coverage points is defined as the coverage of all combinations of al bins associ-
ated with the N coverage points, that is, the Cartesian product of the N sets of coverage-point bins. For exam-

ple:

bit [3:0] a, b;

covergroup cov @ (posedge clk) ;
aXb : cross a, b;
endgroup

The coverage group cov in the example above specifies the cross coverage of two 4-bit variables, a and b. Sys-
temVerilog implicitly creates a coverage point for each variable. Each coverage point has 16 bins, namely
auto[0]...auto[15]. Thecrossof a and b (labeled axb), therefore, has 256 cross products, and each cross
product isabin of axb.

Cross coverage between expressions previously defined as coverage pointsis also allowed. For example:

316 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

bit [3:0] a, b, c;

covergroup cov2 @ (posedge clk) ;
BC: coverpoint b+c;
aXb : cross a, BC;

endgroup

The coverage group cov2 hasthe same number of cross products as the previous example, but in this case, one
of the coverage pointsisthe expression b+c, which islabeled Bc.

bit [31:0] a var;
bit [3:0] b var;

covergroup cov3 @ (posedge clk) ;

A: coverpoint a var { bins yyI[] = { [0:9] }; }
CC: cross b var, A;
endgroup

The coverage group cov3 crosses variable b_var with coverage point A (labeled cc). Variable b_var auto-
matically creates 16 bins (auto[0]...auto[15]). Coverage point A explicitly creates 10 bins
yy[0]...yy[9]. Thecross of two coverage points creates 16 * 10 = 160 cross product bins, namely the pairs
shown below:

<auto[0], yyl[0]l>
<auto[0], yyl[1ll>

<auto[0], yyI[9]>
<auto[1], yyI[0]l>

<auto[15], yyl[9]>

Cross coverage is allowed only between coverage points defined within the same coverage group. Coverage
points defined in a coverage group other than the one enclosing the cross cannot participate in a cross.
Attempts to cross items from different coverage groups shall result in a compiler error.

In addition to specifying the coverage points that are crossed, SystemVerilog includes a powerful set of opera-
tors that allow defining cross coverage bins. Cross coverage bins can be specified in order to group together a
set of cross products. A cross-coverage bin associates a name and a count with a set of cross products. The
count of the bin is incremented every time any of the cross products match, i.e., every coverage point in the
cross matches its corresponding bin in the cross product.

User-defined bins for cross coverage are defined using bins select-expressions. The syntax for defining these
bin selection expressionsis given in Syntax 20-4.

The binsof construct yields the bins of its expression, which can be either a coverage point (explicitly
defined or implicitly defined for a single variable) or a coverage-point bin. The resulting bins can be further
selected by including (or excluding) only the bins whose associated values intersect a desired set of values.
The desired set of values can be specified using acomma-separated list of open_value_range as shown in Syn-
tax 20-4. For example, the following select expression:;

binsof (x) intersect { y }
denotes the bins of coverage point x whose values intersect the range given by v. Its negated form:

! binsof(x) intersect { y }

denotes the bins of coverage point x whose values do not intersect the range given by v.

Copyright 2004 Accellera. All rights reserved. 317

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

The open_value range syntax can specify a single value, a range of values, or an open range, which denotes
the following:

[$: value] => The set of values less than or equal to value
[value : $] => The set of values greater or equal to value

The bins selected can be combined with other selected bins using the logical operators & & and || .

20.5.1 Example of user-defined cross coverage and select expressions
bit [7:0] v_a, v _b;
covergroup cg @ (posedge clk) ;

a: coverpoint v_a

{

bins a1 = { [0:63] };

bins a2 = { [64:127] };
bins a3 = { [128:191] };
bins a4 = { [192:255] };

b: coverpoint v b

bins bl = {0};
bins b2 = { [1:84] };
bins b3 = { [85:169] };
bins b4 = { [170:255] };
}
c : cross v_a, v. b
{
bins cl = ! binsof(a) intersect {[100:200]};// 4 cross products
bins c¢2 = binsof(a.a2) || binsof(b.b2);// 7 cross products

bins c¢3 = binsof(a.al) && binsof(b.b4);// 1 cross product

}

endgroup

The example above defines a coverage-group named cg that samples its cover-points on the positive edge of
signal c1k (not shown). The coverage-group includes two cover-points, one for each of the two 8-bit variables,
v_aand v_b. The coverage-point labeled ‘a’ associated with variable v_a, defines four equal-sized bins for
each possible value of variable v_a. Likewise, the coverage-point labeled ‘b’ associated with variable v_b,
defines four bins for each possible value of variable v_b. The cross definition labeled ‘¢’ specifies the cross
coverage of the two cover-points v_a and v_b. If the cross coverage of cover-points a and b were defined
without any additional cross-bins (select expressions), then cross coverage of a and b would include 16 cross
products corresponding to all combinations of bins a1 through a4 with binsb1 through b4, that is, cross prod-
ucts <al, b1>, <al,b2>, <al,b3>, <al,b4>. . .<a4, bl>, <ad,b2>, <ad,b3>, <ad,b4>.

The first user-defined cross bin, c1, specifies that clshould include only cross products of cover-point a that
do not intersect the value range 100-200. This select expression excludes bins a2, a3, and a4. Thus, c1 will
cover only four cross-products of <al,bl>, <al,b2>, <al,b3>, and <al,b4>.

The second user-defined cross bin, <2, specifies that bin <2 should include only cross products whose values
are covered by bin a2 of cover-point a or cross products whose values are covered by bin b2 of cover-point b.
This select expression includes the following 7 cross products: <a2, b1>, <a2,b2>, <a2,b3>, <a?,b4>, <al,
b2>, <a3,b2>, and <a4,b2>.

Thefinal user-defined cross bin, ¢3, specifies that ¢3 should include only cross products whose values are cov-
ered by bin a1 of cover-point a and cross products whose values are covered by bin ba of cover-point b. This

318 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

select expression includes only one cross-product <al, b4>.

When select expressions are specified on transition bins, the binso£ operator uses the last value of the transi-
tion.

20.5.2 Excluding cross products

A group of bins can be excluded from coverage by specifying a select expression using ignore_bins. For
example;

covergroup VY;
cross a, b

{

ignore bins foo = binsof (a) intersect { 5, [1:3] };

}

endgroup

All cross products that satisfy the select expression are excluded from coverage. Ignored cross products are
excluded even if they areincluded in other cross-coverage bins of the enclosing cross.

20.5.3 Specifying lllegal cross products

A group of bins can be marked asillegal by specifying a select expression using illegal bins. For exam-
ple

covergroup zz (int bad) ;
cross x, y
{
illegal bins foo = binsof(y) intersect {bad};

}

endgroup

All cross products that satisfy the select expression are excluded from coverage, and a run-time error isissued.
Illegal cross products take precedence over any other cross products, that is, they will result in a run-time error
even if they are also explicitly ignored (using an ignore_bins) or included in another cross hin.

20.6 Specifying coverage options

Options control the behavior of the covergroup, coverpoint and cross. There are two types of options:
those that are specific to an instance of a covergroup, and those that specify an option for the covergroup
type asawhole.

The following table lists instance specific covergroup options and their description. Each instance of a cov-

ergroup can initialize an instance specific option to adifferent value. The initialized option value affects only
that instance.

Table 20-1: Instance specific coverage options

Option name Default Description

weight= number 1 If set at the cover group syntactic level, it specifies the weight of
this cover group instance for computing the overall instance cover-
age of the simulation. If set at the cover point (or cross) syntactic
level, it specifies the weight of a coverpoint (or cross) for comput-
ing the instance coverage of the enclosing cover group.

Copyright 2004 Accellera. All rights reserved. 319

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Table 20-1: Instance specific coverage options (continued)

goal=number 90 Specifiesthe target goal for acovergroup instance, or acover point
or across of an instance.
name=string unique Specify anamefor the covergroup instance. If unspecified, aunique
name name for each instance is automatically generated by the tool.
comment=string “ A comment that appears with the instance of a covergroup, or a

cover point or cross of the cover group instance. The comment is
saved in the coverage database and included in the coverage report.

at_least=number 1 Minimum number of hitsfor each bin. A bin with ahit count that is
less than number is not considered covered.

detect_overlap=boolean 0 When true, awarning isissued if there is an overlap between the
range list (or transition list) of two bins of a cover point.

auto_bin_max=number 64 Maximum number of automatically created bins when no bins are
explicitly defined for a cover point.

cross_auto_bin_max=number | unbounded | Maximum number of automatically created cross product binsfor a

Cross.

Cross_num_print_missing= 0 Number of missing (not covered) cross product bins that must be
number saved to the coverage database and printed in the coverage report.
per_instance=boolean 0 Each instance contributes to the overall coverage information for

the cover group type. When true, coverage information for this cov-
ergroup instanceistracked as well.

Theinstance specific options mentioned above can be set in the covergroup definition. The syntax for setting
these options in the covergroup definition is:

option.option name = expression ;
Theidentifier option isabuilt-in member of any coverage group (see Section 20.9 for a description).

An example is shown below.

covergroup gl (int w, string instComment) @ (posedge clk) ;
// track coverage information for each instance of gl in addition
// to the cumulative coverage information for covergroup type gl
option.per instance = 1;

// comment for each instance of this covergroup
option.comment = instComment;

a : coverpoint a_var

{

// Create 128 automatic bins for coverpoint “a” of each instance of gl
option.auto bin max = 128;

——

b : coverpoint b var

—_

// This coverpoint contributes w times as much to the coverage of an
instance of gl than coverpoints "a" and "cl"
option.weight = w;
cl : cross a var, b var ;
endgroup

320 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Option assignment statements in the covergroup definition are evaluated at the time that the covergroup is
instantiated. Theper_instance option can only be set in the covergroup definition. Other instance specific
options can be set procedurally after a covergroup has been instantiated. The syntax is:

coverage_option_assignment ::= // not in Annex A
instance_name.option.option_name = expression ;
| instance_name.covergroup_item_identifier.option.option_name = expression ;

Syntax 20-5—Coverage option assignment syntax (not in Annex A)
Hereisan example:

covergroup gc @ (posedge clk) ;
a : coverpoint a var;
b : coverpoint b var;
endgroup

gc gl = new;
gl.option.comment = "Here is a comment set for the instance gl";
gl.a.option.weight = 3; // Set weight for coverpoint “a” of instance gl

The following table summarizes the syntactical level (covergroup, coverpoint, OF cross) a which
instance options can be specified. All instance options can be specified at the covergroup level. Except for the
weight, goal, comment, and per instance options, al other options set at the covergroup syntactic level
act as a default value for the corresponding option of all coverpoints and crosses in the covergroup. Individual
coverpoint or crosses can overwrite these default values. When set at the covergroup level, the weight, goal,
comment, and per_ instance options do not act as default values to the lower syntactic levels.

Table 20-2: Coverage options per-syntactic level

Allowed in Syntactic L evel
Option name

covergroup coverpoint cross
name Yes No No
weight Yes Yes Yes
goa Yes Yes Yes
comment Yes Yes Yes
at_least Yes (default for coverpoints & crosses) Yes Yes
detect_overlap Yes (default for coverpoints) Yes No
auto_bin_max Yes (default for coverpoints) Yes No
cross_auto_bin_max Yes (default for crosses) No Yes
Cross_num_print_missing Yes (default for crosses) No Yes
per_instance Yes No No

Copyright 2004 Accellera. All rights reserved. 321

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001

20.6.1 Covergroup Type Options

The following table lists options that describe a particular feature (or property) of the covergroup type asa
whole. They are analogous to static data members of classes.

Table 20-3: Coverage group type (static) options

Option name Default Description

weight=constant_number 1 If set at the cover group syntactic level, it specifies the weight of this

cover group for computing the overall cumulative (or type) coverage
of the saved database. If set at the coverpoint (or cross) syntactic
level, it specifies the weight of a coverpoint (or cross) for computing
the cumulative (or type) coverage of the enclosing cover group.

goal=constant_number 90 Specifies the target goal for a cover group type, or a cover point or

cross of acovergroup type.

comment=string_literal

wn

A comment that appears with the cover group type, or acover point or
cross of the cover group type. The comment is saved in the coverage
database and included in the coverage report.

strobe=constant_number 0 If set to 1, all samples happen at the end of thetime slot, like the

$strobe system task.

The covergroup type options mentioned above can be set in the covergroup definition. The syntax for set-
ting these options in the covergroup definition is:

type option.option name = expression ;

Theidentifier type option isabuilt-in member of any coverage group (see Section 20.9 for a description).

Different instances of a covergroup cannot assign different values to type options. This is syntactically disal-
lowed, since these options can only beinitialized via constant expressions. Here is an example:

322

covergroup gl (int w, string instComment) @ (posedge clk) ;

// track coverage information for each instance of gl in addition
// to the cumulative coverage information for covergroup type gl
option.per instance = 1;

type option.comment = "Coverage model for features foo and bar";
type option.strobe = 1; // sample at the end of the time slot

// comment for each instance of this covergroup
option.comment = instComment;

a : coverpoint a var

{
// Use weight 2 to compute the coverage of each instance
option.weight = 2;
// Use weight 3 to compute the cumulative (type) coverage for gl
type option.weight = 3;
// NOTE: type option.weight = w would cause syntax error.

——

b : coverpoint b var

—_

Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

// Use weight w to compute the coverage of each instance
option.weight = w;

// Use weight 5 to compute the cumulative (type) coverage of gl
type option.weight = 5;

}

endgroup

In the above example the coverage for each instance of g1 is computed as:
(((instance coverage of “a’) * 2) + ((instance coverage of “b”) * w)) / (2 + w)

On the other hand the coverage for cover group type “gl” is computed as:
(((overall type coverage of “a’) * 3) + ((overall type coverage of “b") * 5)) / (3 + 5).

Type options can be set procedurally at any time during simulation. The syntax is:

coverage type option_assignment ::= /I not in Annex A
covergroup_hame::type_option.option_name = expression ;
| covergroup_name::covergroup_item_identifier::type option.option_name = expression ;

Syntax 20-6—Coverage type option assignment syntax (not in Annex A)
Hereisan example:

covergroup gc @ (posedge clk) ;
a : coverpoint a var;
b : coverpoint b var;
endgroup

gc::type option.comment = "Here is a comment for covergroup gl";
// Set the weight for coverpoint "a" of covergroup gl
gc::a::type option.weight = 3;
gc gl = new;
The following table summarizes the syntactical level (covergroup, coverpoint, OF cross) in which type

options can be specified. When set at the covergroup level, the type options do not act as defaults for lower
syntactic levels.

Table 20-4: Coverage type-options

Allowed Syntactic Level
Option name
covergroup cover point Cross
weight Yes Yes Yes
goal Yes Yes Yes
comment Yes Yes Yes
strobe Yes No No

Copyright 2004 Accellera. All rights reserved. 323

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

20.7 Predefined coverage methods

The following coverage methods are provided for the covergroup. These methods can be invoked procedur-
aly at any time.

Table 20-5: Predefined coverage methods

Can becalled on
Method Description
(function) . P
covergroup | coverpoint Cross
void sample() Yes No No Triggers sampling of the covergroup
real get_coverage() Yes Yes Yes Calculates type coverage number (0...100)
real get_inst_coverage() Yes Yes Yes Calculates the coverage number (0...100)
void set_inst_name(string) Yes No No Sets the instance name to the given string
void start() Yes Yes Yes Starts collecting coverage information
void stop() Yes Yes Yes Stops collecting coverage information
real query() Yes Yes Yes Returns the cumulative coverage informa-
tion (for the coverage group type as awhole)
real inst_query() Yes Yes Yes Returns the per-instance coverage informa-
tion for thisinstance

20.8 Predefined coverage system tasks and functions

SystemVerilog provides the following system tasks and functions to help manage coverage data collection.

$set_coverage db_name (name) — Sets the filename of the coverage database into which coverage infor-
mation is saved at the end of asimulation run.

$load_coverage db (name) — Load from the given filename the cumulative coverage information for all
coverage group types.

$get_coverage () — Returns as areal number in the range 0 to 100 the overall coverage of all coverage group
types. This number is computed as described above.

20.9 Organization of option and type_option members

The type and type_option members of a covergroup, coverpoint, and cross items are implicitly declared struc-
tures with the following composition:

struct // covergroup option declaration

{

string name ;

int weight ;

int goal ;

string comment ;

int at_least ;

int auto bin max ;

int cross_auto _bin max ;

324 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a

int cross_num print missing ;
bit detect overlap ;
bit per instance ;

} option;

struct // coverpoint option declaration
int weight ;
int goal ;
string comment ;
int at _least ;
int auto_bin max ;
bit detect overlap ;

} option;

struct // cross option declaration
int weight ;
int goal ;
string comment ;
int at_least ;
int cross_auto bin max ;
int cross_num print missing ;

} option;

struct // covergroup type option declaration
int weight ;
int goal ;
string comment ;
bit strobe ;

} type option;

struct // coverpoint and cross type option declaration
int weight ;
int goal ;

string comment ;
} type option;

Copyright 2004 Accellera. All rights reserved. 325

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Section 21
Parameters

21.1 Introduction (informative)

Verilog-2001 provides three constructs for defining compile time constants: the parameter, localparam and
specparam Statements.

The language provides four methods for setting the value of parameter constants in a design. Each parameter
must be assigned a default value when declared. The default value of a parameter of an instantiated module can
be overridden in each instance of the module using one of the following:

— Implicit in-line parameter redefinition (e.9. foo #(value, value) ul (...);)
— Explicit in-line parameter redefinition (e.9. foo # (.name (value), .name(value)) ul (...);)
— defparam Statements, using hierarchical path names to redefine each parameter

21.1.1 Defparam removal

The defparam Sstatement might be removed from future versions of the language. See Section 26.2.

326 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

21.2 Parameter declaration syntax

local_parameter_declaration ::= // fromAnnex A.2.1.1
localparam data type or_implicit list of param_assignments;
parameter_declaration ::=
parameter data type _or_implicit list_of param_assignments
| parameter type list_of_type assignments
specparam_declaration ::=
specparam [packed dimension] list_of specparam_assignments ;
data type or_implicit ::= // from Annex A.2.2.1
data type
| [signing] { packed dimension }
list_of param_assignments ::= param_assignment { , param_assignment } // from Annex A.2.3
list_of specparam_assignments ::= specparam_assignment { , specparam_assignment }
list_of type assignments::=type assignment{ , type assignment }
param_assignment ::= I/ from Annex A.2.4
parameter_identifier { unpacked_dimension} = constant_param_expression
specparam_assignment ::=
specparam_identifier = constant_mintypmax_expression
| pulse_control_specparam
type_assignment ::= type_identifier = data_type
parameter_port_list ::= // from Annex A.1.4
(list_of _param_assignments{ , parameter_port_declaration })
| # (parameter_port_declaration { , parameter_port_declaration})
parameter_port_declaration ::=
parameter_declaration
| data typelist_of param_ assignments
| typelist_of type assignments

Syntax 21-1—Parameter declaration syntax (excerpt from Annex A)

A module, interface, program or class can have parameters, which are set during elaboration and are constant
during simulation. They are defined with data types and default values. With SystemVerilog, if no datatypeis
supplied, parameters default to type 1ogic of arbitrary size for Verilog-2001 compatibility and interoperabil-

ity.

SystemVerilog adds the ability for a parameter to also specify a data type, allowing modules or instances to
have data whose type is set for each instance.

module ma #(parameter pl = 1, parameter type p2 = shortint)
(input logic [pl:0] i, output logic [pl:0] o) ;
p2 j = 0; // type of j is set by a parameter, (shortint unless redefined)
always @(i) begin
o = 1;
J++i
end
endmodule

module mb;

logic [3:0] 1i,0;

ma #(.pl(3), .p2(int)) ul(i,o); //redefines p2 to a type of int
endmodule

Copyright 2004 Accellera. All rights reserved. 327

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

SystemVerilog adds the ability for local parameters to be declared in a generate block. Local parameters can
also be declared in a package or in a compilation unit scope. In these contexts, the parameter keyword can
be used as a synonym for the Localparam keyword.

$ can be assigned to parameters of integer types. A parameter to which $ is assigned shall only be used wher-
ever $ can be specified as alitera constant.

For example, $ represents unbounded range specification, where the upper index can be any integer.

parameter r2 = $;
property ingl (rl,r2);
@ (posedge clk) a ##[rl:r2] b ##1 ¢ |=> d;
endproperty
assert ingl(3);

To support whether a constant is $, a system function is provided to test whether a constant is a $. The syntax
of the system function is

$isunbounded (const expression) ;

$isunbounded returnstrue if const_expression is unbounded. Typically, $isunbounded would be used as a
condition in the generate Statement.

The example below illustrates the benefit of using $ in writing properties concisely where the range is parame-
terized. The checker in the example ensures that a bus driven by signal en remains 0, i.e, quiet for the specified
minimum (min_quiet) and maximum (max_quiet) quiet time.

Note that function $isunbounded is used for checking the validity of the actual arguments.
interface quiet time checker #(parameter min quiet = 0,

parameter max quiet = 0)
(input logic clk, reset n, [1l:0]en);

generate
if (max quiet == 0) begin
property quiet time;
@ (posedge clk) reset n |—> (Scountones (en) == 1) ;
endproperty
al: assert property (quiet time);
end

else begin
property quiet time;
@ (posedge clk)

(reset_n && (Spast(en) != 0) && en == 0)
|->(en == 0) [*min_quiet:max_quiet]
##1 (Scountones(en) == 1);
endproperty
al: assert property (quiet time);
end
if ((min quiet == 0) && ($isunbounded(max quiet))
$display(warning msg) ;
endgenerate
endinterface

quiet time checker #(0, 0) quiet never (clk,1,enables);
quiet time checker #(2, 4) quiet in window (clk,1,enables);
quiet time checker #(0, $) quiet any (clk,1,enables);

328 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Another example below illustrates that by testing for $, a property can be configured according to the require-
ments. When parameter max_cks is unbounded, it is not required to test for expr to become false.

interface width checker #(parameter min cks = 1, parameter max cks = 1)
(input logic clk, reset n, expr);

generate begin
if ($isunbounded(max cks)) begin
property width;
@ (posedge clk)

(reset_n && Srose(expr)) |-> (expr [* min cks]);
endproperty
a2: assert property (width);

end
else begin
property assert width p;
@ (posedge clk)

(reset_n && $rose (expr)) |—> (expr [* min cks:max cks])
##1 (l!expr);
endproperty
a2: assert property (width);
end
endgenerate
endinterface

width checker #(3, $) max width unspecified (clk,1,enables);
width checker #(2, 4) width specified (clk,1,enables);

SystemVerilog also adds the ability to omit the parameter keyword in a parameter port list.

class vector #(size = 1);
logic [size-1:0] v;
endclass

typedef vector# (16) word;

interface simple bus # (AWIDTH = 64, type T = word) (input bit clk)
endinterface

7

Inalist of parameters, a parameter can depend on earlier parameters. In the following declaration, the default
value of the second parameter depends on the value of the first parameter. The third parameter is a type, and
the fourth parameter is avalue of that type.

module mc # (int N = 5, M = N*16, type T = int, T x = 0)
(..o

endmodule

Copyright 2004 Accellera. All rights reserved. 329

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Section 22
Configuration Libraries

22.1 Introduction (informative)

Verilog-2001 provides the ability to specify design configurations, which specify the binding information of
module instances to specific Verilog HDL source code. Configurations utilize libraries. A library is a collec-
tion of modules, primitives and other configurations. Separate library map files specify the source code loca-
tion for the cells contained within the libraries. The names of the library map files is typically specified as
invocation options to simulators or other software tools reading in Verilog source code.

SystemVerilog adds support for interfaces to Verilog configurations.

22.2 Libraries
A library isanamed collection of cells. A cell isamodule, macromodule, primitive, interface, program, pack-

age, or configuration. A configuration is a specification of which source files bind to each instance in the
design.

330 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 23
System Tasks and System Functions

23.1 Introduction (informative)

SystemVerilog adds several system tasks and system functions as described in the following sections.

In addition, SystemVerilog extends the behavior of several Verilog-2001 system tasks, as described in
Section 23.14.

23.2 Elaboration-time typeof function

typeof_function ::= /I notin Annex A
$typeof (expression)
| $typeof (data type)

Syntax 23-1—typeof function syntax (not in Annex A)

The $typeof system function returns a type derived from its argument. The data type returned by the
stypeof system function may be used to assign or override atype parameter, or in a comparison with another
$typeof, evaluated during elaboration.

When called with an expression as its argument, $stypeof returns a type that represents the self-determined
type result of the expression. The expression’s return type is determined during elaboration but never evalu-
ated. The expression shall not contain any hierarchica identifiers or references to elements of dynamic objects.
In all contexts, $typeof together with its argument can be used in any place an elaboration constant is
required.

When used in a comparison, equality (==) or case equality (=== istrueif the operands are type equivalent
(see Section 5.8, Type equivalency).

For example:

bit [12:0] A bus, B bus;
parameter type bus t = $typeof (A bus);

generate
case (S$typeof (but t))
Stypeof (bit[12:0]): addfixed int #(bus _t) (A bus,B bus);
Stypeof (real) : add float #(sStypeof (A bus)) (A bus,B bus);
endcase

endgenerate

The actual value returned by $typeof isnot visible to the user and is not defined.

23.3 Typename function

typename_function ::= // not in Annex A
$typename (expression)
| $typename (data type)

Syntax 23-2—typename function syntax (not in Annex A)

Copyright 2004 Accellera. All rights reserved. 331

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

The $typename system function returns a string that represents the resolved type of its argument.
The return string is constructed in the following steps:

1) A typedef that creates an equivalent typeis resolved back to built-in or user defined types.

2) Thedefault signing is removed, even if present explicitly in the source

3) System generated names are created for anonymous structs, unions and enums.

4) A'$ isused asthe placeholder for the name of an anonymous unpacked array.

5) Actual encoded values are appended with numeration named constants.

6) User defined type names are prefixed with their defining package or scope namespace.

7) Array ranges are represented as unsized decimal humbers.

8) Whitespacein the sourceisremoved and asingle space is added to separate identifiers and keywords from
each other.

This process is similar to the way that type equality is computed, except that array ranges and built-in equiva-
lent types are not normalized in the generated string. Thus $typename can be used in string comparisons for
stricter type-checking of arrays than $typeof.

When called with an expression as its argument, $typename returns a string that represents the self-deter-
mined type result of the expression. The expression's return type is determined during elaboration but never
evaluated. When used as an elaboration time constant, the expression shall not contain any hierarchical identi-
fiers or referencesto elements of dynamic objects.

// source code // S$typename would return

typedef bit node; // "bit"

node signed [2:0] X; // "bit signed[2:0]"

int signed Y; // "int"

package A;
enum {A,B,C=99} X; // "enum{A=32'd0,B=32'dl,C='32bX}A::e$1"
typedef bit [9:1'bl] word // "A::bit[9:1]"

endpackage : A
import A:.*;
module top;
typedef struct {node A,B;} AB t;
AB t AB[10]; // "struct{bit A;bit B;}top.AB t$[0:9]"

endmodule

23.4 Expression size system function

size function ::= /I 'notin Annex A
$bits (expression)
| $bits (type_identifier)

Syntax 23-3—Size function syntax (not in Annex A)
The $bits system function returns the number of bits required to hold an expression as a hit stream. See
Section 3.16, Bit-stream casting for a definition of legal types. A 4 state value counts as one bit. Given the dec-
laration:

logic [31:0] foo;

332 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Then sbits (foo) shal return 32, even if the implementation uses more than 32-bits of storage to represent
the 4-state values. Given the declaration:

typedef struct {
logic valid;
bit [8:1] data;
} MyType;

The expression $bits (MyType) shall return 9, the number of data bits needed by a variable of type MyType.

The sbits function can be used as an elaboration-time constant when used on fixed sized types; hence, it can
be used in the declaration of other types or variables.

typedef bit[$bits (MyType) :1] MyBits; //same as typedef bit [9:1] MyBits;
MyBits b;

Variable b can be used to hold the bit pattern of a variable of type myType without loss of information.
The sbits system function returns 0 when called with adynamically sized typethat is currently empty. It isan
error to usethe $bits system function directly with adynamically sized type identifier.

23.5 Range system function

range_function ::= /I notin Annex A
$isunbounded (constant_expression)

Syntax 23-4—Range function syntax (not in Annex A)
The $isunbounded system function returns true if the argument is $. Given the declaration:
parameter int foo = $;

Then $isunbounded shall return true.

23.6 Shortreal conversions

Verilog 2001 defines a real datatype, and the system functions $realtobits and $bitstoreal to permit
exact hit pattern transfers between areal and a 64 bit vector. SystemVerilog adds the shortreal type, andin
a parale manner, $shortrealtobits and sbitstoshortreal are defined to permit exact bit transfers
between a shortreal and a 32 bit vector.

[31:0] $shortrealtobits(shortreal val) ;
shortreal sbitstoshortreal (bit val) ;

$shortrealtobits converts from a shortreal number to the 32-hit representation (vector) of that short-

real number. sbitstoshortreal iSthereverse of $shortrealtobits; it convertsfrom the bit pattern to a
shortreal number.

Copyright 2004 Accellera. All rights reserved. 333

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

23.7 Array querying system functions

array_query_function ::= /I not in Annex A
array_dimension_function (array_identifier , dimension_expression)
| array_dimension_function (type_identifier [, dimension_expression])
| $dimensions (array_identifier)
| $dimensions (type_identifier)
array_dimension_function ::=
$left
| $right
| $low
| $high
| $increment
| $size

dimension_expression ::= expression

Syntax 23-5—Array querying function syntax (not in Annex A)

SystemVerilog provides system functions to return information about a particular dimension of an array vari-
able or type. Thereturn typeis integer, and the default for the optional dimension expression is 1. The array
dimension can specify any fixed sized index (packed or unpacked), or any dynamically sized index (dynamic,
associative, or queue).

— $left shall return the left bound (msb) of the dimension

— $right shall return the right bound (Isb) of the dimension

— $1low shall return the minimum of $1eft and $right of the dimension
— s$high shall return the maximum of sleft and $right of the dimension

— $increment shall return 1 if $left is greater than or equal to $right, and -1 if $left is less than
Sright

— $size shall return the number of elementsin the dimension, which isequivalent to $high - $1low + 1

— $dimensions shall return the number of dimensionsin the array, or O for asingular object
The dimensions of an array shall be numbered as follows: The slowest varying dimension (packed or

unpacked) is dimension 1. Successively faster varying dimensions have sequentially higher dimension num-
bers. Intermediate type definitions are expanded first before numbering the dimensions.

For example:
// Dimension numbers
// 3 4 1 2

reg [3:0][2:1] n [1:5]([2:8];
typedef reg [3:0] [2:1] packed reg;
packed reg n[1:5][2:8]; // same dimensions as in the lines above

For afixed sized integer type (integer, shortint, longint, and byte), dimension 1 is pre-defined. For an
integer N declared without arange specifier, its bounds are assumed to be [$bits (N) -1:0].

If an out-of-range dimension is specified, these functions shall returna ’ x.
When used on adynamic array or queue dimension, these functions return information about the current state

of the array. If the dimension is currently empty, these functions shall return a ' x. It is an error to use these
functions directly on adynamically sized type identifier.

334 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Use on associative array dimensions is restricted to index types with integral values. With integral indexes,
these functions shall return:

— $left shall return 0

— S$right shall return the highest possible index value

— $low shall return the lowest currently allocated index value
— $high shall return the largest currently allocated index value
— $increment shall return -1

— $size shall return the number of elements currently allocated

If the array identifier is afixed sized array, these query functions can be used as a constant function and passed
as a parameter before elaboration. These query functions can also be used on fixed sized type identifiers in
which caseit is always treated as a constant function.

Given the declaration below:

typedef logic [16:1] Word;
Word Ram[0:9];

The following system functions return 16:
$size (Word)

$size (Ram, 2)

23.8 Assertion severity system tasks

assert_severity task ::= /I notin Annex A
fatal_message task

| nonfatal_message task
fatal_message task ::= $fatal [(finish_number [, message_argument { , message argument}])];
nonfatal_message task ::= severity task [([message argument { , message argument] } 1)1 ;
severity_task ::= $error | $warning | $info
finish_number ::=0| 1|2
message_argument ::= string | expression

Syntax 23-6—Assertion severity system task syntax (not in Annex A)

SystemVerilog assertions have a severity level associated with any assertion failures detected. By default, the
severity of an assertion failureis “error”. The severity levels can be specified by including one of the following
severity system tasksin the assertion fail statement:

— $fatal shdl generate arun-time fatal assertion error, which terminates the simulation with an error code.
The first argument passed to $fatal shal be consistent with the corresponding argument to the Verilog
$finish system task, which sets the level of diagnostic information reported by the tool. Calling sfatal
resultsin an implicit call to $finish.

— sSerror shal bearun-time error.
— $warning shal be arun-time warning, which can be suppressed in atool-specific manner.

— $info shall indicate that the assertion failure carries no specific severity.

All of these severity system tasks shall print a tool-specific message, indicating the severity of the failure, and

Copyright 2004 Accellera. All rights reserved. 335

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001
specific information about the failure, which shall include the following information:
— Thefile name and line number of the assertion statement,

— Thehierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also report the simulation run-time at which the severity system task is
called.

Each of the severity tasks can include optional user-defined information to be reported. The user-defined mes-

sage shall use the same syntax as the Verilog $display system task, and can include any number of argu-
ments.

23.9 Assertion control system tasks

assert_control_task ::= /I not in Annex A
assert_task [(levels[, list_of _modules or_assertions])] ;
assert_task ::=
$asserton
| $assertoff
| $assertkill
list_ of modules or assertions::=
module_or_assertion{ , module_or_assertion }
module_or_assertion ::=
module_identifier
| assertion_identifier
| hierarchical_identifier

Syntax 23-7—Assertion control syntax (not in Annex A)

SystemVerilog provides three system tasks to control assertions.

— sassertoff shall stop the checking of all specified assertions until a subsequent $asserton. An asser-
tion that is already executing, including execution of the pass or fail statement, is not affected

— sassertkill shall abort execution of any currently executing specified assertions and then stop the
checking of all specified assertions until a subsequent $asserton.

— $asserton shall re-enable the execution of all specified assertions

23.10 Assertion system functions

assert_boolean_functions ::= /' notin Annex A
assert_function (expression) ;
assert_function ::=
$onehot
| $onehotO
| $isunknown

Syntax 23-8—Assertion system function syntax (not in Annex A)
Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as

whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

336 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

— $onehot returnstrueif one and only one bit of expression is high.
— $onehot0 returnstrueif at most one bit of expression is high.

— $isunknown returnstrue if any bit of the expressionisx or z. Thisis equivalent to
“expression === 'bx.

All of the above system functions shall have areturn type of bit. A return value of 17 b1 shall indicate true,
and areturn value of 1’ bo shall indicate false.

A function is provided to return sampled value of an expression.
$sampled (expression [, clocking event])

Three functions are provided for assertions to detect changes in values between two adjacent clock ticks.

Srose (expression [, clocking event])
$fell (expression [, clocking event])
$stable (expression [, clocking event])

The past values can be accessed with the $past function.
$past (expression [, number of ticks] [, expression2] [, clocking event])
$sampled, $rose, $fell, $stable and $past arediscussed in Section 17.7.3.
The number of 1sin abit vector expression can be determined with the $countones function.
Scountones (expression)

$countones isdiscussed in Section 17.10.

23.11 Random number system functions
To supplement the Verilog $random system function, SystemVerilog provides three special system functions

for generating pseudorandom numbers, $urandom, $urandom range and $srandom. These system func-
tions are presented in Section 12.12.

23.12 Program control
In addition to the normal simulation control tasks ($stop and $£inish), aprogram can use the sexit control

task. When all programs exit, the simulation finishes and an implicit call to $finish is made. The usage of
sexit ispresented in Section 16.6 on program blocks.

23.13 Coverage system functions
SystemVerilog has several built-in system functions for obtaining test coverage information:

$coverage control, $Scoverage get max, $coverage get, Scoverage merge and
$coverage save. The coverage system functions are described in Section 29.2.

23.14 Enhancements to Verilog-2001 system tasks

SystemVerilog adds system tasks and system functions as described in the following sections. In addition, Sys-
temVerilog extends the behavior of the following:

Copyright 2004 Accellera. All rights reserved. 337

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001
— su and sz format specifiers:

— For packed data, su and %z are defined to operate as though the operation were applied to the equiva-
lent vector.

— For unpacked struct data, su and ¢z are defined to apply as though the operation were performed on
each member in declaration order.

— For unpacked union data, $u and %z are defined to apply as though the operation were performed on
the first member in declaration order.

— su and sz are not defined on unpacked arrays.

— The count of dataitemsread by a su or 3z for an aggregate type is always either 1 or O; the individual
members are not counted separately.

— sfread
$fread hastwo variants—aregister variant and a set of three memory variants.

The register variant,

Sfread (myreg, £d);
— isdefined to be the one applied for all packed data.

— For unpacked struct data, $fread is defined to apply as though the operation were performed on each
member in declaration order.

— For unpacked union data, sfread is defined to apply as though the operation were performed on the
first member in declaration order.

— For unpacked arrays, the origina definition applies except that unpacked struct or union elements are
read as described above.

23.15 $readmemb and $readmemh

23.15.1 Reading packed data

$readmemb and $readmemh are extended to unpacked arrays of packed data, associative arrays of packed
data, and dynamic arrays of packed data. In such cases, the system tasks treat each packed element as the vec-
tor equivalent and perform the normal operation.

When working with associative arrays, indexes must be of integral types.

23.15.2 Reading 2-state types

$readmemb and $readmemh are extended to packed data of 2-state type, such asint or enumerated types. For
2-state integer types, reading proceeds the same as for conventional Verilog reg types (e.g. integer), with the
exception that X or Z datais converted to 0. For enumerated types, the file data represents the ordinal val ue of

the enumerated type. (See Section 3.10) If an enumeration ordinal is out of range for a given type, then an error
shall be issued and no further reading shall take place.

23.16 $writememb and $writememh

SystemVerilog introduces system tasks $writememb and $writememh:

338 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

writemem_tasks ::= /I not in Annex A
$writememb (" file_name" , memory_name[, start_addr [, finish addr]]) ;
| $writememh (" file_name" , memory_name| , start_addr [, finish addr]]);

Syntax 23-9—writemem system task syntax (not in Annex A)

$writememb and $writememh are used to dump memory contents to files that are readable by $readmemb
and $readmemh, respectively. If “file_name’ exists at thetime $writememb Of $writememh iscalled, thefile
will be overwritten (.i.e. there is ho append mode).

23.16.1 Writing packed data

$writememb and $writememh treat packed data identicaly to $readmemb and $readmemh. See
Section 23.15.1

23.16.2 Writing 2-state types

$writememb and $writememh can write out data corresponding to unpacked arrays of 2-state types, such as
int or enumerated types. For enumerated types, values in the file correspond to the ordinal values of the enu-
merated type. (See Section 3.10).

23.16.3 Writing addresses to output file

When swritememb and $writememh write out data corresponding to unpacked or dynamic arrays, address
specifiers (@-words) shall not be written to the output file.

When $writememb and $writememh Write out data corresponding to associative arrays, address specifiers
shall be written to the output file.

23.17 File format considerations for multi-dimensional unpacked arrays

In SystemVerilog, $readmemb, $readmemh, $writememb and $writememh can work with multi-dimen-
sional unpacked arrays.

The file contents are organized in row-major order, with each dimension’s entries ranging from low to high
address. Thisis backward compatible with plain Verilog memories.

In this organization, the lowest dimension (i.e. the right-most dimension in the array declaration) varies the
most rapidly. There is a hierarchical sense to the file data. The higher dimensions contain words of lower-
dimension data, sorted in row-major order. Each successive lower dimension is entirely enclosed as part of
higher dimension words.

As an example of file format organization, here is the layout of a file representing words for a memory
declared:

reg [31:0] mem [0:2] [0:4] [5:8];

In the example word contents, wzyx,
— z corresponds to words of the [0:2] dimension
— y corresponds to words of the [0:4] dimension

— X corresponds to words of the [5:8] dimension

w005 w006 w007 w008
w015 w0l6 w017 w018

Copyright 2004 Accellera. All rights reserved. 339

SystemVerilog 3.1a

w025 w026
w035 w036
w045 w046
wl05 wl06
wll5 wllé
wl25 wl26
wl35 wl36
wl45 wl4deé
w205 w206
w215 w2l6
w225 w226
w235 w236
w245 w246

w027
w037
w047
wl07
wll?7
wl27
wl37
wl47
w207
w217
w227
w237
w247

w028
w038
w048
wl08
wll8
wl28
wl38
wl48
w208
w218
w228
w238
w248

Accellera
Extensionsto Verilog-2001

Note that the diagram would be identical if one or more of the unpacked dimension declarations were reversed,

asin:

reg [31:0] mem [2:0] [0:4] [8:5]

Addressentriesin the file exclusively address the highest dimension’swords. In the above case, address entries

in the file could look something as follows:

@0 w005
w015
w025
w035
w045

@1 wl05
wll5s
wl25
wl35
wl45

@2 w205
w215
w225
w235
w245

w006
w016
w026
w036
w046
wl06
wllé
wl26
wl36
wl46
w206
w216
w226
w236
w246

w007
w017
w027
w037
w047
wl07
wll?7
wl27
wl37
wl47
w207
w217
w227
w237
w247

w008
w018
w028
w038
w048
wl08
wlls
wl28
wl38
wl48
w208
w218
w228
w238
w248

When $readmemh Or $readmemb iS given a file without address entries, all data is read assuming that each
dimension has complete data. i.e. each word in each dimension will be initialized with the appropriate value
from the file. If the file contains incomplete data, the read operation will stop at the last initialized word, and

any remaining array words or sub words will be |eft unchanged.

When $readmemh Or $readmemb iS given a file with address entries, initialization of the specified highest
dimension words is done. If the file contains insufficient words to completely fill a highest dimension word,

then the remaining sub words are |eft unchanged.

When a memory contains multiple packed dimensions, the memory words in the pattern file are composed of
the sum total of al bitsin the packed dimensions. The layout of packed bitsin packed dimensionsisdefined in

Section 4.3.

23.18 System task arguments for multi-dimensional unpacked arrays

The $readmemb, $readmemh, $writememb, and swritememh Signatures are shown below:

Sreadmemb ("file name", memory name/[,
$readmemh ("file name", memory name/[,
Swritememb ("file name", memory name|[,

340

start _addr/[,
start _addr/[,
start _addr/[,

finish addrll]);
finish addrll]);
finish addrl]l);

Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Swritememh ("file name", memory name[, start addr[, finish addrll]);

memory_name can be an unpacked array, or a partially indexed multi-dimensional unpacked array that
resolves to alesser-dimensioned unpacked array.

Higher order dimensions must be specified with an index, rather than a complete or partial dimension range.
The lowest dimension (i.e. the right-most specified dimension in the identifier) can be specified with dice syn-
tax. See Section 4.4 for details on legal array indexing in SystemVerilog.

The start_addr and finish_addr arguments apply to the addresses of the unpacked array selected by
memory_name. This address range represents the highest dimension of datain the file_name.

When dice syntax is used in the memory_name argument, any start_addr and finish_addr arguments must fall
within the bounds of the slice’s range.

The direction of the highest dimension’s file entries is given by the relative magnitudes of start_addr and
finish_addr, asisthe casein 1364-2001.

Copyright 2004 Accellera. All rights reserved. 341

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Section 24
VCD Data

SystemVerilog does not extend the VCD format. Some SystemVerilog types can be dumped into a standard
VCD file by masquerading as a Verilog type. The following table lists the basic SystemVerilog types and their
mapping to a Verilog type for VCD dumping.

Table 24-1: VCD type mapping

SystemVerilog Verilog Size

bit reg Size of packed dimension
logic reg Size of packed dimension
int integer 32

shortint integer 16

longint integer 64

shortreal real

byte reg 8

enum integer 32

Packed arrays and structures are dumped as a single vector of reg. Multiple packed array dimensions are col-
lapsed into a single dimension.

If an enum declaration specified atype, it is dumped as that type rather than the default shown above.
Unpacked structures appear as named fork...join blocks, and their member elements of the structure appear
asthe types above. Since named fork...join blockswith variable declarations are seldom used in testbenches

and hardware models, this makes structures easy to distinguish from variables declared inbegin...end blocks,
which are more frequently used in testbenches and models.

Asin Verilog 2001, unpacked arrays and automatic variables are not dumped.

Note that the current VCD format does not indicate whether a variable has been declared as signed or
unsigned.

342 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 25
Compiler Directives

25.1 Introduction (informative)

Verilog provides the *define text substitution macro compiler directive. A macro can contain arguments,
whose values can be set for each instance of the macro. For example:

‘define NAND (dval) nand #(dval)

‘NAND (3) il (y, a, b); //'NAND(3) macro substitutes with: nand #(3)
‘NAND (3:4:5) i2 (o, ¢, d); //'NAND(3:4:5) macro substitutes with: nand
#(3:4:5)

SystemVerilog enhances the capabilities of the *define compiler directive to support the construction of
string literals and identifiers.

Verilog provides the ~include file inclusion compiler directive. SystemVerilog enhances the capabilities to
support standard include specification, and enhances the ~include directive to accept afile name constructed
with a macro.

25.2 ‘define macros

In Verilog, the *define macro text can include a backslash (\) at the end of aline to show continuation on
the next line.

In SystemVerilog, the macro text can also include ~v, ~\~" and ~~.

An - overridesthe usual lexical meaning of v, and indicates that the expansion should include an actual quo-
tation mark. This allows string literals to be constructed from macro arguments.

A ~\ " indicates that the expansion should include the escape sequence \ ', e.g.
“define msg(x,y) “"x: T\TnryT\Tnrow

This expands:
$display (" msg(left side,right side)) ;

to:
S$display("left side: \"right side\"");

A ~~ delimitslexical tokens without introducing white space, allowing identifiers to be constructed from argu-
ments, e.g.

“define foo(f) £ suffix
This expands:

‘foo (bar)
to:

bar suffix

Copyright 2004 Accellera. All rights reserved. 343

SystemVerilog 3.1a

The *include directive can be followed by a macro, instead of aliteral string:

‘define home (filename) ‘"/home/foo/filename*"
‘include ‘home (myfile)

25.3‘include
The syntax of the *include compiler directiveis:
include compiler directive ::=

‘include "filename"
| ‘include <filename>

Accellera
Extensionsto Verilog-2001

When the filename is an absolute path, only that £ilename isincluded and only the double quote form of

the *include can be used.

When the double quote ("filename") version is used, the behavior of ‘include is unchanged from IEEE

Std. 1364-2001.

When the angle bracket (<filename>) notation is used, then only the vendor defined location containing files
defined by the language standard is searched. Relative path names given inside the < > are interpreted relative

to the vendor-defined location in all cases.

Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 26
Features under consideration for removal from SystemVerilog

26.1 Introduction (informative)

Certain Verilog language features can be simulation inefficient, easily abused, and the source of design prob-
lems. These features are being considered for removal from the SystemVerilog language, if thereis an alternate
method for these features.

The Verilog language features that have been identified in this standard as ones which can be removed from
Verilog are defparam and procedural assign/deassign.

26.2 Defparam statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the de fparam method of specifying the value of a parameter can be a source of design errors,
and can be an impediment to tool implementation. The defparam Statement does not provide a capability that
cannot be done by another method, which avoids these problems. Therefore, the committee has placed the
defparam Statement on a deprecation list. This means is that a future revision of the Verilog standard might
not require support for this feature. This current standard still requires tools to support the defparam state-
ment. However, users are strongly encouraged to migrate their code to use one of the alternate methods of
parameter redefinition.

Prior to the acceptance of the Verilog-2001 Standard, it was common practice to change one or more parame-
ters of instantiated modules using a separate defparam statement. Defparam statements can be a source of tool
complexity and design problems.

A defparam Statement can precede the instance to be modified, can follow the instance to be modified, can be
at the end of the file that contains the instance to be modified, can be in a separate file from the instance to be
modified, can modify parameters hierarchically that in turn must again be passed to other defparam state-
ments to modify, and can modify the same parameter from two different defparam Sstatements (with unde-
fined results). Due to the many ways that a defparam can modify parameters, a Verilog compiler cannot
insure the final parameter values for an instance until after all of the design files are compiled.

Prior to Verilog-2001, the only other method available to change the values of parameters on instantiated mod-
uleswasto use implicit in-line parameter redefinition. This method uses # (parameter value) aspart of the
module instantiation. Implicit in-line parameter redefinition syntax requires that all parameters up to and
including the parameter to be changed must be placed in the correct order, and must be assigned values.

Verilog-2001 introduced explicit in-line parameter redefinition, in the form # (. parameter name (value)),
as part of the module instantiation. This method gives the capability to pass parameters by name in the instan-
tiation, which supplies all of the necessary parameter information to the model in the instantiation itself.

The practice of using defparam Statementsis highly discouraged. Engineers are encouraged to take advantage
of the Verilog-2001 explicit in-line parameter redefinition capability.

See Section 21 for more details on parameters.

26.3 Procedural assign and deassign statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the procedural assign and deassign Statements can be a source of design errors, and can be
an impediment to tool implementation. The procedural assign/deassign Statements do not provide a capa
bility that cannot be done by another method, which avoids these problems. Therefore, the committee has
placed the procedural assign/deassign Statements on adeprecation list. This means that a future revision of
the Verilog standard might not require support for theses statements. This current standard still requirestoolsto

Copyright 2004 Accellera. All rights reserved. 345

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

support the procedural assign/deassign statements. However, users are strongly encouraged to migrate
their code to use one of the alternate methods of procedural or continuous assignments.

Verilog has two forms of the assign Statement:
— Continuous assignments, placed outside of any procedures

— Procedural continuous assignments, placed within a procedure

Continuous assignment statements are a separate process that are active throughout simulation. The continuous
assignment statement accurately represents combinational logic at an RTL level of modeling, and is frequently
used.

Procedural continuous assignment statements become active when the assign statement is executed in the
procedure. The process can be de-activated using a deassign statement. The procedural assign/deassign
statements are seldom needed to model hardware behavior. In the unusual circumstances where the behavior of
procedural continuous assignments are required, the same behavior can be modeled using the procedural force
and release statements.

The fact that the assign statement to be used both outside and inside a procedure can cause confusion and
errors in Verilog models. The practice of using the assign and deassign Statements inside of procedural
blocksis highly discouraged.

346 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 27
Direct Programming Interface (DPI)

This chapter highlights the Direct Programming Interface and provides a detailed description of the System-
Verilog layer of theinterface. The C layer isdefined in Annex E.

27.1 Overview

Direct Programming Interface (DPI) is an interface between SystemVerilog and a foreign programming lan-
guage. It consists of two separate layers: the SystemVerilog layer and a foreign language layer. Both sides of
DPI are fully isolated. Which programming language is actually used as the foreign language is transparent
and irrelevant for the SystemVerilog side of this interface. Neither the SystemVerilog compiler nor the foreign
language compiler is required to analyze the source code in the other’s language. Different programming lan-
guages can be used and supported with the same intact SystemVerilog layer. For now, however, SystemVerilog
3.1 defines aforeign language layer only for the C programming language. See Annex E for more details.

The motivation for thisinterface istwo-fold. The methodol ogical requirement isthat the interface should allow
a heterogeneous system to be built (a design or a testbench) in which some components can be written in alan-
guage (or more languages) other than SystemVerilog, hereinafter called the foreign language. On the other
hand, there is also a practical need for an easy and efficient way to connect existing code, usually writtenin C
or C++, without the knowledge and the overhead of PLI or VPI.

DPI follows the principle of a black box: the specification and the implementation of a component is clearly
separated and the actual implementation is transparent to the rest of the system. Therefore, the actual program-
ming language of the implementation is also transparent, though this standard defines only C linkage seman-
tics. The separation between SystemVerilog code and the foreign language is based on using functions as the
natural encapsulation unit in SystemVerilog. By and large, any function can be treated as a black box and
implemented either in SystemVerilog or in the foreign language in a transparent way, without changing its
cals.

27.1.1 Tasks and functions

DPI allows direct inter-language function calls between the languages on either side of the interface. Specifi-
caly, functions implemented in a foreign language can be caled from SystemVerilog; such functions are
referred to as imported functions. SystemVerilog functions that are to be called from a foreign code shall be
specified in export declarations (see Section 27.6 for more details). DPI allows for passing SystemVerilog data
between the two domains through function arguments and results. There is no intrinsic overhead in this inter-
face.

It is also possible to perform task enables across the language boundary. Foreign code can call SystemVerilog
tasks, and native Verilog code can call imported tasks. An imported task has the same semantics as a native
Verilog task: It never returns avalue, and it can block and consume simulation time.

All functions used in DPI are assumed to complete their execution instantly and consume 0 (zero) simulation
time, just as normal SystemVerilog functions. DPI provides no means of synchronization other than by data
exchange and explicit transfer of control.

Every imported task and function needs to be declared. A declaration of an imported task or function is
referred to as an import declaration. Import declarations are very similar to SystemVerilog task and function
declarations. Import declarations can occur anywhere where SystemVerilog task and function definitions are
permitted. An import declaration is considered to be a definition of a SystemVerilog task or function with a
foreign language implementation. The same foreign task or function can be used to implement multiple Sys-
temVerilog tasks and functions (this can be a useful way of providing differing default argument values for the
same basic task or function), but a given SystemVerilog name can only be defined once per scope. Imported
task and functions can have zero or more formal input, output, and inout arguments. Imported tasks
always return a void value, and thus can only be used in statement context. Imported functions can return a
result or be defined as void functions.

Copyright 2004 Accellera. All rights reserved. 347

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

DPI isbased entirely upon SystemVerilog constructs. The usage of imported functionsisidentical asfor native
SystemVerilog functions. With few exceptions imported functions and native functions are mutually
exchangeable. Calls of imported functions are indistinguishable from calls of SystemVerilog functions. This
facilitates ease-of-use and minimizes the learning curve. Similar interchangeable semantics exist between
native SystemVerilog tasks and imported tasks.

27.1.2 Data types

SystemVerilog data types are the sole data types that can cross the boundary between SystemVerilog and afor-
eign language in either direction (i.e., when an imported function is called from SystemVerilog code or an
exported SystemVerilog function is called from a foreign code). It is not possible to import the data types or
directly use the type syntax from another language. A rich subset of SystemVerilog data types is allowed for
formal arguments of import and export functions, although with some restrictions and with some notational
extensions. Function result types are restricted to small values, however (see Section 27.4.5).

Formal arguments of an imported function can be specified as open arrays. A formal argument is an open array
when a range of one or more of its dimensions, packed or unpacked, is unspecified. An open array is like a
multi-dimensional dynamic array formal in both packed and unpacked dimensions, and is thus denoted using
the same syntax as dynamic arrays, using [] to denote an open dimension. This is solely a relaxation of the
argument-matching rules. An actual argument shall match the formal one regardless of the range(s) for its cor-
responding dimension(s), which facilitates writing generalized code that can handle SystemVerilog arrays of
different sizes. See Section 27.4.6.1.

27.1.2.1 Data representation

DPI does not add any constraints on how SystemVerilog-specific data types are actually implemented. Optimal
representation can be platform dependent. The layout of 2- or 4-state packed structures and arrays is imple-
mentation- and platform-dependent.

The implementation (representation and layout) of 4-state values, structures, and arrays is irrelevant for Sys-
temVerilog semantics, and can only impact the foreign side of the interface.

27.2 Two layers of the DPI

DPI consists of two separate layers: the SystemVerilog layer and aforeign language layer. The SystemVerilog
layer does not depend on which programming language is actually used as the foreign language. Although dif-
ferent programming languages can be supported and used with the intact SystemVerilog layer, SystemVerilog
3.1 defines aforeign language layer only for the C programming language. Nevertheless, SystemVerilog code
shall look identical and its semantics shall be unchanged for any foreign language layer. Different foreign lan-
guages can require that the SystemVerilog implementation shall use the appropriate function call protocoal,
argument passing and linking mechanisms. This shall be, however, transparent to SystemVerilog users. Sys-
temVerilog 3.1 requires only that its implementation shall support C protocols and linkage.

27.2.1 DPI SystemVerilog layer

The SystemVerilog side of DPI does not depend on the foreign programming language. In particular, the actual
function call protocol and argument passing mechanisms used in the foreign language are transparent and irrel-
evant to SystemVerilog. SystemVerilog code shall look identical regardless of what code the foreign side of the
interface is using. The semantics of the SystemVerilog side of the interface is independent from the foreign
side of the interface.

This chapter does not constitute a complete interface specification. It only describes the functionality, seman-
tics and syntax of the SystemVerilog layer of the interface. The other half of the interface, the foreign language
layer, defines the actual argument passing mechanism and the methods to access (read/write) formal arguments
from the foreign code. See Annex E for more details.

348 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

27.2.2 DPI foreign language layer

The foreign language layer of the interface (which is transparent to SystemVerilog) shall specify how actual
arguments are passed, how they can be accessed from the foreign code, how SystemVerilog-specific data types
(such as logic and packed) are represented, and how to translate them to and from some predefined C-like

types.

The data types allowed for formal arguments and results of imported functions or exported functions are gen-
erally SystemVerilog types (with some restrictions and with notational extensions for open arrays). The user is
responsible for specifying in their foreign code the native types equivalent to the SystemVerilog types used in
imported declarations or export declarations. Software tools, like a SystemVerilog compiler, can facilitate the
mapping of SystemVerilog types onto foreign native types by generating the appropriate function headers.

The SystemVerilog compiler or simulator shall generate and/or use the function call protocol and argument
passing mechanisms required for the intended foreign language layer. The same SystemVerilog code (com-
piled accordingly) shall be usable with different foreign language layers, regardless of the data access method
assumed in a specific layer. Annex F defines DPI foreign language layer for the C programming language.

27.3 Global name space of imported and exported functions

Every task or function imported to SystemVerilog must eventually resolve to aglobal symbol. Similarly, every
task or function exported from SystemVerilog defines a global symbol. Thus the tasks and functions imported
to and exported from SystemVerilog have their own global name space of linkage names, different from com-
pilation-unit scope name space. Global names of imported and exported tasks and functions must be unique
(no overloading is allowed) and shall follow C conventions for naming; specifically, such names must start
with a letter or underscore, and can be followed by alphanumeric characters or underscores. Exported and
imported tasks and functions, however, can be declared with local SystemVerilog names. Import and export
declarations allow users to specify aglobal name for a function in addition to its declared name. Should a glo-
bal name clash with a SystemVerilog keyword or a reserved name, it shall take the form of an escaped identi-
fier. The leading backdlash (\) character and the trailing white space shall be stripped off by the
SystemVerilog tool to create the linkage identifier. Note that after this stripping, the linkage identifier so
formed must comply with the normal rules for C identifier construction. If a global name is not explicitly
given, it shall be the same as the SystemVerilog task or function name. For example:

export "DPI" foo plus = function \foo+ ; // "foo+" exported as "foo plus"
export "DPI" function foo; // "foo" exported under its own name

import "DPI" init 1 = function void \init[1] (); // "init 1" is a linkage name
import "DPI" \begin = function void \init[2] (); // "begin" is a linkage name

The same global task or function can be referred to in multiple import declarations in different scopes or/and
with different SystemVerilog names, see Section 27.4.4.

Multiple export declarations are allowed with the same c_identifier, explicit or implicit, aslong as they arein
different scopes and have the same type signature (as defined in Section 27.4.4 for imported tasks and func-
tions). Multiple export declarations with the same c_identifier in the same scope are forbidden.

27.4 Imported tasks and functions

The usage of imported functionsis similar as for native SystemVerilog functions.

27.4.1 Required properties of imported tasks and functions — semantic constraints

This section defines the semantic constraints imposed on imported tasks or functions. Some semantic restric-
tions are shared by all imported tasks or functions. Other restrictions depend on whether the special properties
pure (See Section 27.4.2) or context (See Section 27.4.3) are specified for an imported task or function. A
SystemVerilog compiler is not able to verify that those restrictions are observed and if those restrictions are not
satisfied, the effects of such imported task or function calls can be unpredictable.

Copyright 2004 Accellera. All rights reserved. 349

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

27.4.1.1 Instant completion of imported functions

Imported functions shall complete their execution instantly and consume zero-simulation time, similarly to
native functions.

Note that imported tasks can consume time, similar to native SystemVerilog tasks.
27.4.1.2 input, output and inout arguments

Imported functions can have input, output and inout arguments. The formal input arguments shall not be
modified. If such arguments are changed within a function, the changes shall not be visible outside the func-
tion; the actual arguments shall not be changed.

Theimported function shall not assume anything about the initial values of formal output arguments. The ini-
tial values of output arguments are undetermined and implementation-dependent.

The imported function can access the initial value of a forma inout argument. Changes that the imported
function makesto aformal inout argument shall be visible outside the function.

27.4.1.3 Special properties pure and context

Special properties can be specified for an imported task or function: as pure oOr as context (See also
Section 27.4.2 or 27.4.3).

A function whose result depends solely on the values of its input arguments and with no side effects can be
specified as pure. This can usually alow for more optimizations and thus can result in improved simulation
performance. Section 27.4.2 details the rules that must be obeyed by pure functions. An imported task can
never be declared pure.

An imported task or function that is intended to call exported tasks or functions or to access SystemVerilog
data objects other then its actual arguments (e.g. via VPl or PLI calls) must be specified as context. Calls of
context tasks and functions are specially instrumented and can impair SystemVerilog compiler optimizations;
therefore ssimulation performance can decrease if the context property is specified when not necessary. A
task or function not specified as context shall not read or write any data objects from SystemVerilog other
then its actual arguments. For tasks or functions not specified as context, the effects of calling PLI, VPI, or
exported SystemVerilog tasks or functions can be unpredictable and can lead to unexpected behavior; such
calls can even crash. Section 27.4.3 details the restrictions that must be obeyed by non-context tasks or func-
tions.

If neither the pure nor the context attribute is used on an imported task or function, the task or function shall
not access SystemVerilog data objects, however it can perform side-effects such as writing to a file or manipu-
lating aglobal variable.

27.4.1.4 Memory management

The memory spaces owned and allocated by the foreign code and SystemVerilog code are disjoined. Each side
is responsible for its own allocated memory. Specifically, an imported function shall not free the memory allo-
cated by SystemVerilog code (or the SystemVerilog compiler) nor expect SystemVerilog code to free the mem-
ory alocated by the foreign code (or the foreign compiler). This does not exclude scenarios where foreign code
allocates ablock of memory, then passes ahandle (i.e., apointer) to that block to SystemVerilog code, which in
turn calls an imported function (e.g. C standard function £ree) which directly or indirectly frees that block.

NOTE—In this last scenario, a block of memory is alocated and freed in the foreign code, even when the standard func-
tionsmalloc and free are called directly from SystemVerilog code.

27.4.1.5 Reentrancy of imported tasks

Since imported tasks can block (consume time), it is possible for an imported task’s C code to be simultaneously active in
multiple execution threads. Standard reentrancy considerations must be made by the C programmer. Some examples of

350 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

such considerations include safe use of static variables, and ensuring that only thread-safe C standard library calls (MT
safe) are used.

27.4.1.6 C++ exceptions

It is possible to implement DPI imported tasks and functions using C++, as long as C linkage conventions are
observed at the language boundary. If C++ is used, exceptions must not propagate out of any imported task or
function. Undefined behavior will result if an exception crosses the language boundary from C++ into System-
Verilog.

27.4.2 Pure functions

A pure function call can be safely eliminated if its result is not needed or if the previous result for the same
values of input arguments is available somehow and can be reused without needing to recalculate. Only non-
void functions with no output Or inout arguments can be specified as pure. Functions specified as pure
shall have no side effects whatsoever; their results need to depend solely on the values of their input argu-
ments. Calls to such functions can be removed by SystemVerilog compiler optimizations or replaced with the
values previously computed for the same values of the input arguments.

Specifically, a pure function is assumed not to directly or indirectly (i.e., by calling other functions):
— perform any file operations

— read or write anything in the broadest possible meaning, includes i/o, environment variables, objects from
the operating system or from the program or other processes, shared memory, sockets, etc.

— access any persistent data, like global or static variables.

If a pure function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

27.4.3 Context tasks and functions

Some DPI imported tasks or functions require that the context of their call is known. It takes special instru-
mentation of their call instances to provide such context; for example, an internal variable referring to the “ cur-
rent instance” might need to be set. To avoid any unnecessary overhead, imported task or function calls in
SystemVerilog code are not instrumented unless the imported task or function is specified as context.

All DPI exported tasks or functions require that the context of their call is known. This occurs since System-
Verilog task or function declarations always occur in instantiable scopes, hence alowing a multiplicity of
unique task or function instances.

For the sake of simulation performance, an imported task or function call shall not block SystemVerilog com-
piler optimizations. An imported task or function not specified as context shall not access any data objects
from SystemVerilog other than its actual arguments. Only the actual arguments can be affected (read or writ-
ten) by its call. Therefore, a call of anon-context task or function is not a barrier for optimizations. A context
imported task or function, however, can access (read or write) any SystemVerilog data objects by calling PLI1/
VPI, or by calling an export task or function. Therefore, acall to a context task or functionis a barrier for Sys-
temVerilog compiler optimizations.

Only calls of context imported tasks or functions are properly instrumented and cause conservative optimiza-
tions; therefore, only those tasks or functions can safely call al tasks or functions from other APIs, including
PLI and VPI functions or exported SystemVerilog tasks or functions. For imported tasks or functions not spec-
ified as context, the effects of calling PLI or VPI functions or SystemVerilog tasks or functions can be unpre-
dictable and such calls can crash if the callee requires a context that has not been properly set. However note
that declaring an import context task or function does not automatically make any other simulator interface
automatically available. For VPI access (or any other interface access) to be possible, the appropriate imple-
mentation defined mechanism must still be used to enable these interface(s). Note also that DPI calls do not
automatically create or provide any handles or any special environment that can be needed by those other
interfaces. It is the user’s responsihility to create, manage or otherwise manipulate the required handles/envi-

Copyright 2004 Accellera. All rights reserved. 351

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

ronment(s) needed by the other interfaces.

Context imported tasks or functions are always implicitly supplied a scope representing the fully qualified
instance name within which the import declaration was present. This scope defines which exported System-
Verilog tasks or functions can be called directly from the imported task or function; only tasks or functions
defined and exported from the same scope as the import can be called directly. To call any other exported Sys-
temVerilog tasks or functions, the imported task or function shall first have to modify its current scope, in
essence performing the foreign language equivalent of a SystemVerilog hierarchical task or function call.

Specia DPI utility functions exist that allow imported task or functions to retrieve and operate on their scope.
See Annex E for more details.

27.4.4 Import declarations

Each imported task or function shall be declared. Such declaration are referred to as import declarations. The
syntax of an import declaration is similar to the syntax of SystemVerilog task or function prototypes (see
Section 10.5).

Imported tasks or functions are similar to SystemVerilog tasks or functions. Imported tasks or functions can
have zero or more formal input, output, and inout arguments. Imported functions can return aresult or be
defined as void functions. Imported tasks never return aresult, and thus are always declared in foreign code as
void functions.

dpi_import_export ::= I/ from Annex A.2.6
import " DPI" [dpi_function_import_property] [¢_identifier =] dpi_function _proto ;
| import " DPI" [dpi_task_import_property] [¢_identifier =] dpi_task_proto ;
| export " DPI" [c_identifier =] function function_identifier ;
| export " DPI" [c_identifier =] task task_identifier ;
dpi_function_import_property ::= context | pure
dpi_task_import_property ::= context
dpi_function_proto®? ::= function_prototype
dpi_task _proto9 ::= task_prototype
function_prototype ::= function function_data_type function_identifier ([tf_port_list])
task_prototype ::= task task_identifier ([tf_port_list]) // from Annex A.2.7

NOTES: [l from Annex A.10

8) dpi_function_proto return types are restricted to small values, as per 27.4.5.

9) Formals of dpi_function_proto and dpi_task_proto cannot use pass by reference mode and class types cannot be
passed at all; for the complete set of restrictions see 27.4.6.

Syntax 27-1—DPI import declaration syntax (excerpt from Annex A)

An import declaration specifies the task or function name, function result type, and types and directions of for-
mal arguments. It can also provide optional default values for formal arguments. Formal argument names are
optional unless argument passing by name is needed. An import declaration can also specify an optional task
or function property. Imported functions can have the properties context or pure; imported tasks can have
the property context.

Note that an import declaration is equivalent to defining a task or function of that name in the SystemVerilog
scope in which the import declaration occurs, and thus multiple imports of the same task or function name into
the same scope are forbidden. Note that this declaration scope is particularly important in the case of imported
context tasks or functions, see Section 27.4.3; for non-context imported tasks or functions the declaration
scope has no other implications other than defining the visibility of the task or function.

352 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

c_identifier provides the linkage name for this task or function in the foreign language. If not provided, this
defaults to the same identifier as the SystemVerilog task or function name. In either case, this linkage name
must conform to C identifier syntax. An error shall occur if the c_identifier, either directly or indirectly, does
not conform to these rules.

For any given c_identifier (whether explicitly defined with c_identifier=, or automatically determined from the
task or function name), all declarations, regardless of scope, must have exactly the same type signature. The
signature includes the return type and the number, order, direction and types of each and every argument. Type
includes dimensions and bounds of any arrays or array dimensions. Signature also includesthe pure/context
qualifiers that can be associated with an extern definition.

Note that multiple declarations of the same imported or exported task or function in different scopes can vary
argument names and default values, provided the type compatibility constraints are met.

A formal argument name is required to separate the packed and the unpacked dimensions of an array.

The qualifier ref cannot be used in import declarations. The actual implementation of argument passing
depends solely on the foreign language layer and its implementation and shall be transparent to the SystemVer-
ilog side of the interface.

The following are examples of external declarations.
import "DPI" function void myInit () ;

// from standard math library
import "DPI" pure function real sin(real);

// from standard C library: memory management
import "DPI" function chandle malloc (int size); // standard C function
import "DPI" function void free (chandle ptr); // standard C function

// abstract data structure: gqueue
import "DPI" function chandle newQueue (input string name of queue) ;

// Note the following import uses the same foreign function for

// implementation as the prior import, but has different SystemVerilog name
// and provides a default value for the argument.

import "DPI" newQueue=function chandle newAnonQueue (input string s=null) ;
import "DPI" function chandle newElem(bit [15:0]);

import "DPI" function void enqueue (chandle queue, chandle elem) ;

import "DPI" function chandle dequeue (chandle queue) ;

// miscellanea

import "DPI" function bit [15:0] getStimulus() ;

import "DPI” context function void processTransaction (chandle elem,
output logic [64:1] arr [0:63]);

import "DPI" task checkResults (input string s, bit [511:0] packet) ;

27.4.5 Function result

Function result types are restricted to small values. The following SystemVerilog data types are allowed for
imported function results:

—_ void,byte,shortint,int,longint,real,shortreal,chandle,andstring
— packed bit arrays up to 32 bits and all types that are eventually equivalent to packed bit arrays up to 32 bits

— scalar values of typebit and 1ogic

The same restrictions apply for the result types of exported functions.

Copyright 2004 Accellera. All rights reserved. 353

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

27.4.6 Types of formal arguments

A rich subset of SystemVerilog data typesis allowed for formal arguments of import and export tasks or func-
tions. Generally, C compatible types, packed types and user defined types built of types from these two catego-
ries can be used for formal arguments of DPI tasks or functions. The set of permitted types is defined
inductively.

The following SystemVerilog types are the only permitted types for formal arguments of import and export
tasks or functions:

— void, byte, shortint, int, longint, real, shortreal, chandle, and string
— scalar values of typebit and 1ogic
— packed one dimensional arrays of typebit and logic

Note however, that every packed type, whatever is its structure, is eventually equivalent to a packed one
dimensional array. Therefore practically all packed types are supported, although their internal structure
(individual fields of structs, multiple dimensions of arrays) shall be transparent and irrel evant.

— enumeration types interpreted as the type associated with that enumeration
— types constructed from the supported types with the help of the constructs:
— struct
— unpacked array

— typedef

The following caveats apply for the types permitted in DPI:

— Enumerated data types are not supported directly. Instead, an enumerated data type is interpreted as the
type associated with that enumerated type.

— SystemVerilog does not specify the actual memory representation of packed structures or any arrays,
packed or unpacked. Unpacked structures have an implementation-dependent packing, normally matching
the C compiler.

— Theactual memory representation of SystemVerilog datatypesis transparent for SystemVerilog semantics
and irrelevant for SystemVerilog code. It can be relevant for the foreign language code on the other side of
the interface, however; a particular representation of the SystemVerilog data types can be assumed. This
shall not restrict the types of formal arguments of imported tasks or functions, with the exception of
unpacked arrays. SystemVerilog implementation can restrict which SystemVerilog unpacked arrays are
passed as actual arguments for a formal argument which is a sized array, although they can be aways
passed for an unsized (i.e., open) array. Therefore, the correctness of an actual argument might be imple-
mentation-dependent. Neverthel ess, an open array provides an implementation-independent solution.

27.4.6.1 Open arrays

The size of the packed dimension, the unpacked dimension, or both dimensions can remain unspecified; such
cases are referred to as open arrays (or unsized arrays). Open arrays allow the use of generic code to handle
different sizes.

Formal arguments of imported functions can be specified as open arrays. (Exported SystemVerilog functions
cannot have formal arguments specified as open arrays.) A formal argument is an open array when a range of
one or more of its dimensions is unspecified (denoted by using square brackets ([1)). Thisis solely a relax-
ation of the argument-matching rules. An actual argument shall match the formal one regardless of the range(s)
for its corresponding dimension(s), which facilitates writing generalized code that can handle SystemVerilog
arrays of different sizes.

Although the packed part of an array can have an arbitrary number of dimensions, in the case of open arrays

354 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

only asingle dimension is allowed for the packed part. Thisis not very restrictive, however, since any packed
type is eventually equivalent to one-dimensional packed array. The number of unpacked dimensions is not
restricted.

If aformal argument is specified as an open array with a range of its packed or one or more of its unpacked
dimensions unspecified, then the actual argument shall match the formal one—regardiess of its dimensions
and sizes of its linearized packed or unpacked dimensions corresponding to an unspecified range of the formal
argument, respectively.

Here are examples of types of formal arguments (empty square brackets [1 denote open array):

logic

bit [8:1]

bit[]

bit [7:0] array8x1l0 [1:10] // array8x1l0 is a formal arg name
logic [31:0] array32xN [] // array32xN is a formal arg name
logic [] arrayNx3 [3:1] // arrayNx3 is a formal arg name
bit [] arrayNxN [] // arrayNxN is a formal arg name

Example of complete import declarations:

import "DPI" function void foo(input logic [127:0]);
import "DPI" function void boo(logic [127:0] 1 [1); // open array of 128-bit

The following example shows the use of open arrays for different sizes of actual arguments:
typedef struct {int i; ... } MyType;

import "DPI" function void foo (input MyType i [][]);
/* 2-dimensional unsized unpacked array of MyType */

MyType a 10x5 [11:20] [6:2];
MyType a 64x8 [64:1][-1:-8];

foo(a_10x5) ;
foo(a_64x8) ;

27.5 Calling imported functions

The usage of imported functionsis identical as for native SystemVerilog functions., hence the usage and syn-
tax for calling imported functions is identical as for native SystemVerilog functions. Specifically, arguments
with default values can be omitted from the call; arguments can be passed by name, if all formal arguments are
named.

27.5.1 Argument passing

Argument passing for imported functions is ruled by the WYSIWYG principle: What You Specify Is What You
Get, see Section 27.5.1.1. The evaluation order of formal arguments follows general SystemVerilog rules.

Argument compatibility and coercion rules are the same as for native SystemVerilog functions. If acoercionis
needed, atemporary variable is created and passed as the actual argument. For input and inout arguments,
the temporary variable isinitialized with the value of actual argument with the appropriate coercion; for out-
put Or inout arguments, the value of the temporary variable is assigned to the actual argument with the
appropriate conversion. The assignments between atemporary and the actual argument follow general System-
Verilog rules for assignments and automatic coercion.

On the SystemVerilog side of the interface, the values of actua arguments for formal input arguments of
imported functions shall not be affected by the callee; theinitial values of formal output arguments of imported

Copyright 2004 Accellera. All rights reserved. 355

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

functions are unspecified (and can be implementation-dependent), and the necessary coercions, if any, are
applied as for assignments. imported functions shall not modify the values of their input arguments.

For the SystemVerilog side of the interface, the semantics of arguments passing is as if input arguments are
passed by copy-in, output arguments are passed by copy-out, and inout arguments were passed by copy-in,
copy-out. The terms copy-in and copy-out do not impose the actual implementation; they refer only to “hypo-
thetical assignment”.

The actual implementation of argument passing is transparent to the SystemVerilog side of the interface. In
particular, it is transparent to SystemVerilog whether an argument is actually passed by value or by reference.
The actual argument passing mechanism is defined in the foreign language layer. See Annex E for more
details.

27.5.1.1 “What You Specify Is What You Get” principle

The principle “What You Specify Is What You Get” guarantees the types of formal arguments of imported
functions — an actual argument is guaranteed to be of the type specified for the formal argument, with the
exception of open arrays (for which unspecified ranges are statically unknown). Formal arguments, other than
open arrays, are fully defined by import declaration; they shall have ranges of packed or unpacked arrays
exactly as specified in the import declaration. Only the declaration site of the imported function is relevant for
such formal arguments.

Another way to state this is that no compiler (either C or SystemVerilog) can make argument coercions
between a caller’s declared formal and the callee’'s declared formals. this is because the callee's formal argu-
ments are declared in a different language than the caller’s formal arguments; hence hereisno visible relation-
ship between the two sets of formals. Users are expected to understand all argument rel ationships and provide
properly matched types on both sides of the interface.

Formal arguments defined as open arrays have the size and ranges of the corresponding actual arguments, i.e.,
have the ranges of packed or unpacked arrays exactly as that of the actual argument. The unsized ranges of
open arrays are determined at a call site; the rest of type information is specified at the import declaration.

So, if aformal argument isdeclaredasbit [15:8] b [],thenitistheimport declaration which specifiesthe
formal argument is an unpacked array of packed bit array with bounds 15 to 8, while the actual argument used
at aparticular call site defines the bounds for the unpacked part for that call.

27.5.2 Value changes for output and inout arguments

The SystemVerilog simulator is responsible for handling value changes for output and inout arguments.
Such changes shall be detected and handled after control returns from imported functions to SystemVerilog
code.

For output and inout arguments, the value propagation (i.e., value change events) happens as if an actual
argument was assigned a formal argument immediately after control returns from imported functions. If there
is more than one argument, the order of such assignments and the related value change propagation follows
general SystemVerilog rules.

27.6 Exported functions

DPI allows calling SystemVerilog functions from another language. However, such functions must adhere to
the same restrictions on argument types and results as are imposed on imported functions. It is an error to
export a function that does not satisfy such constraints.

SystemVerilog functions that can be called from foreign code need to be specified in export declarations.
Export declarations are alowed to occur only in the scope in which the function being exported is defined.
Only one export declaration per function is allowed in a given scope.

Note that class member functions cannot be exported, but all other SystemVerilog functions can be exported.

356 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Similar to import declarations, export declarations can define an optional ¢_identifier to be used in the for-
eign language when calling an exported function.

dpi_import_export ::= I from Annex A.2.6
| export " DPI" [c_identifier =] function function_identifier ;

Syntax 27-2—DPI export declaration syntax (excerpt from Annex A)

c_identifier is optional here. It defaults to function identifier. For rules describing c identifier, see
Section 27.3. Note that all export functions are always context functions. No two functions in the same Sys-
temVerilog scope can be exported with the same explicit or implicit c_identifier. The export declaration and
the definition of the corresponding SystemVerilog function can occur in any order. Only one export declaration
is permitted per SystemVerilog function.

27.7 Exported tasks

SystemVerilog allows tasks to be called from a foreign language, similar to functions. Such tasks are termed
“exported tasks”.

All aspects of exported functions described above in Section 27.6 apply to exported tasks. Thisincludes legal
declaration scopes as well as usage of the optional c_identifier.

It is never legal to call an exported task from within an imported function. These semantics are identical to
native SystemVerilog semantics, in which it isillegal for afunction to perform atask enable.

It islegal for an imported task to call an exported task only if the imported task is declared with the context
property. Section 27.4.3 (Context tasks and functions) for more details.

One difference between exported tasks and exported functions is that SystemVerilog tasks do not have return
value types. The return value of an exported task is an int value which indicates if adisableis active or not on
the current execution thread.

Similarly, imported tasks return an int value which is used to indicate that the imported task has acknowledged
adisable. See Section 27.8 for more detail on disablesin DPI.

27.8 Disabling DPI tasks and functions

It is possible for a disable statement to disable a block that is currently executing a mixed language call
chain. When a DPI import task or function is disabled, the C code is required to follow a simple disable proto-
col. The protocol gives the C code the opportunity to perform any necessary resource cleanup, such as closing
open file handles, closing open VPI handles, or freeing heap memory.

An imported task or function is said to be in the disabled state when a disable Statement somewhere in the
design targets either it or aparent for disabling. Note that the only way for an imported task or function to enter
the disabled state isimmediately after the return of a call to an exported task or function. An important aspect
of the protocol is that disabled import tasks and functions must programmatically acknowledge that they have
been disabled. A task or function can determine that it is in the disabled state by calling the API function
svIsDisabledState ().

The protocol is composed of the following items:
1) When an exported task returns due to adisable, it must return avalue of 1. Otherwise it must return O.
2) When an imported task returns due to a disable, it must return avalue of 1. Otherwise it must return 0.

3) Before an imported function returns due to a disable, it must cal the APl function
svAckDisabledState ().

Copyright 2004 Accellera. All rights reserved. 357

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

4) Once an imported task or function enters the disabled state, it isillegal for the current function invocation
to make any further calls to exported tasks or functions.

Items 2, 3, and 4 are mandatory behavior for imported DPI tasks and functions. It is the responsibility of the
DPI programmer to correctly implement the behavior.

Item 1 is guaranteed by SystemVerilog simulators. In addition, simulators must implement checks to ensure
that items 2, 3, and 4 are correctly followed by imported tasks and functions. If any protocol item is not cor-
rectly followed, afatal simulation error isissued.

Note that if an exported task itself is the target of a disable, its parent imported task is not considered to bein
the disabled state when the exported task returns. In such cases the exported task shall return value 0, and calls
to svIsDisabledstate () shdl return 0 aswell.

When a DPI imported task or function returns due to a disable, the values of its output and inout parameters
are undefined. Similarly, function return values are undefined when an imported function returns due to a dis-
able. C programmers can return values from disabled functions, and C programmers can write values into the
locations of output and inout parameters of imported tasks or functions. However, SystemVerilog simula-
tors are not obligated to propagate any such valuesto the calling SystemVerilog code if adisableisin effect.

358 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 28
SystemVerilog Assertion API

This chapter defines the Assertion Application Programming Interface (API) in SystemVerilog.

28.1 Requirements

SystemVerilog provides assertion capabilities to enable:

— auser’'s C code to react to assertion events.
— third-party assertion “waveform” dumping tools to be written.
— third-party assertion coverage tools to be written.

— third-party assertion debug tools to be written.

28.1.1 Naming conventions

All elements added by this interface shall conform to the Verilog Procedural Interface (VPI) interface naming
conventions.

— All names are prefixed by vpi.

— All type names shall start with vpi, followed by initialy capitalized words with no separators, e.g.,
vpiAssertCheck.

— All callback names shall start with cb, followed by initialy capitalized words with no separators, e.g.,

cbAssertionStart.

— All function names shall start with vpi_, followed by all lowercase words separated by underscores
(),e0., vpi_get _assert info().
28.2 Extensions to VPl enumerations

These extensions shall be appended to the contents of the vpi user.h file, described in IEEE Std. 1364-
2001, Annex G. The numbersin the range 700 - 799 are reserved for the assertion portion of the VPI.

28.2.1 Object types

This section lists the object type VPI calls. The VPI reserved range for these callsis 700 - 729.
#define vpiAssertion 700 /* assertion */

28.2.2 Object properties
This section lists the object property VPI calls. The VPI reserved range for these callsis 700 - 729.

/* Assertion types */

#define vpiSequenceType 701
#define vpiAssertType 702
#define vpiCoverType 703
#idefine vpiPropertyType 704

#idefine vpiImmediateAssertType705

Copyright 2004 Accellera. All rights reserved. 359

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

28.2.3 Callbacks

This section lists the system callbacks. The VPI reserved range for these callsis 700 - 719.

1) Assertion
#define cbAssertionStart 700
#define cbAssertionSuccess 701
#define cbAssertionFailure 702

#define cbAssertionStepSuccess 703
#define cbAssertionStepFailure 704

#define cbAssertionDisable 705
#define cbAssertionEnable 706
#define cbAssertionReset 707
#define cbAssertionKill 708

2) “Assertion system”

#define cbAssertionSysInitialized709

#idefine cbAssertionSysStart 710
#define cbAssertionSysStop 711
#tdefine cbAssertionSysEnd 712
#define cbAssertionSysReset 713

28.2.4 Control constants

This section lists the system control constant callbacks. The VPI reserved range for these callsis 730 - 759.

1) Assertion
#idefine vpiAssertionDisable 730
#idefine vpiAssertionEnable 731
#define vpiAssertionReset 732
#define vpiAssertionKill 733

#define vpiAssertionEnableStep 734
#idefine vpiAssertionDisableStep 735

2) Assertion stepping
#define vpiAssertionClockSteps 736

3) “Assertion system”

#idefine vpiAssertionSysStart 737
#idefine vpiAssertionSysStop 738
#define vpiAssertionSysEnd 739
#define vpiAssertionSysReset 740

28.3 Static information

This section defines how to obtain assertion handles and other static assertion information.

28.3.1 Obtaining assertion handles

SystemVerilog extends the VPI module iterator model (i.e., the instance) to encompass assertions, as shown in
Figure 28-1.

The following steps highlight how to obtain the assertion handles for named assertions.

360 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

module assertion

all other module ->> object iterators
from IEEE 1364-2001, section 26.6.1 page 634

Figure 28-1 — Encompassing assertions

Note: Iteration on assertions from interfaces is not shown in Figure 28-1 since the interface object type is not
currently defined in VPI. However the assertion API permits iteration on assertions from interface instance
handles and obtaining static information on assertions used in interfaces (see Section 28.3.2.1).

1) Iterate al assertionsin the design: use anuLL reference handle (ref) tovpi_iterate (), ed.,

itr = vpi iterate(vpiAssertion, NULL) ;
while (assertion = vpi_scan(itr)) ({
/* process assertion */

2) lterate all assertions in an instance: pass the appropriate instance handle as a reference handle to
vpi iterate(), €g0.,

itr = vpi iterate(vpiAssertion, instanceHandle) ;
while (assertion = vpi_scan(itr)) ({
/* process assertion */

3) Obtain the assertion by name: extend vpi handle by name to aso search for assertion names in the
appropriate scope(s), e.d.,
vpiHandle = vpi handle by name (assertName, scope)
4) To obtain an assertion of a specific type, e.g. cover assertions, the following approach should be used:
vpiHandle assertion;
itr = vpi iterate(vpiAssertionType, NULL) ;
while (assertion = vpi scan(itr)) {

if (vpi_get (vpiAssertionType, assertion) == vpiCoverType) {
/* process cover type assertion */
}

}
NOTES
1—Aswith all VPI handles, assertion handles are handles to a specific instance of a specific assertion.

2—Unnamed assertions cannot be found by name.

Copyright 2004 Accellera. All rights reserved. 361

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

28.3.2 Obtaining static assertion information

The following information about an assertion is considered to be static.

— Assertion name
— Instance in which the assertion occurs
— Module definition containing the assertion

— Assertion type

1) Sequence
2) Assert

3) Cover

4) Property

5) ImmediateAssert
— Assertion source information: the file, line, and column where the assertion is defined.

— Assertion clocking block/expression
28.3.2.1 Using vpi_get assertion_info

Static information can be obtained directly from an assertion handle by using vpi_get_assertion_info(),
as shown below.

typedef struct t vpi source info {
PLI BYTE8 *fileName;
PLI INT32 startLine;
PLI INT32 startColumn;
PLI INT32 endLine;
PLI INT32 endColumn;
} s _vpi source info, *p vpi source info;
typedef struct t vpi assertion_info {
PLI BYTE8 *assertName; /* name of assertion */
vpiHandle instance; /* instance containing assertion */
PLI BYTE8 defname; /* name of module/interface containing assertion */
vpiHandle clock; /* clocking expression */
PLI_INT32 assertionType; /* vpiSequenceType, vpiAssertType, vpiCoverType,
*/
/* vpiPropertyType, vpilmmediateAssertType */
s_vpi source info sourcelnfo;
} s vpi assertion info, *p vpi assertion info;
PLI INT32 vpi get assertion info (assert handle, p vpi assertion info);

This call obtains all the static information associated with an assertion.

The inputs are avalid handle to an assertion and a pointer to an existing s_vpi_assertion_info datastruc-
ture. On success, the function returns TRUE and the s_vpi assertion info data structure is filled in as
appropriate. On failure, the function returns FALSE and the contents of the assertion data structure are unpre-
dictable.

Assertions can occur in modules and interfaces: for assertions defined in modules, the instance field in the
s _vpi assertion info structure shall contain the handle to the appropriate module or interface instance.
Note that VPl does not currently define the information model for interfaces and therefore the interface
instance handle shall be implementation dependent. The clock field of that structure contains a handle to the
event expression representing the clock for the assertion, as determined by Section 17.14.

362 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

NOTE: asingle call returns all the information for efficiency reasons.

28.3.2.2 Extending vpi_get () and vpi_get str()

Inadditionto vpi_get assertion_info, the following existing VPI functions are also extended:
vpi_get (), vpi_get_str()

vpi_get () can beused to query the following VPl property from a handle to an assertion:

vpiAssertionDirective
returns one of vpiSequenceType, vpiAssertType, vpiCoverType, vpiPropertyType, vpiImme-
diateAssertType.

vpiLineNo
returns the line number where the assertion is declared.

vpi_get str () can beused to obtain the following VP properties from an assertion handle:

vpiFileName
returns the filename of the source file where the assertion was declared.

vpiName
returns the name of the assertion.

vpiFullName
returns the fully qualified name of the assertion.

28.4 Dynamic information

This section defines how to place assertion system and assertion callbacks.

28.4.1 Placing assertion system callbacks

Usevpi register cb (), settingthe cb_rtn element to the function to be invoked and the reason element
of thes_cb_data structure to one of the following values, to place an assertion system callback.

cbAssertionSysInitialized
occurs after the system has initialized. No assertion-specific actions can be performed until this callback
completes. The assertion system can initialize before cbstartofSimulation does or afterwards.

cbAssertionSysStart

the assertion system has become active and starts processing assertion attempts. This always occur after
cbAssertionSysInitialized. By default, the assertion system is“started” on simulation startup, but
the user can delay this by using assertion system control actions.

cbAssertionSysStop

the assertion system has been temporarily suspended. While stopped no assertion attempts are processed
and no assertion-related callbacks occur. The assertion system can be stopped and resumed an arbitrary
number of times during a single simulation run.

cbAssertionSysEnd

occurs when all assertions have completed and no new attempts shall start. Once this callback occurs no
more assertion-related callbacks shall occur and assertion-related actions shall have no further effect. This
typically occurs after the end of simulation.

cbAssertionSysReset
occurs when the assertion system is reset, e.g., due to a system control action.

The callback routine invoked follows the normal VPI callback prototype and is passed an s_cb_data contain-
ing the callback reason and any user data provided to thevpi_register cb () call.

Copyright 2004 Accellera. All rights reserved. 363

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

28.4.2 Placing assertions callbacks
Usevpi_register assertion cb() to place an assertion callback; the prototypeis:

/* typedef for vpi register assertion cb callback function */
typedef PLI INT32 (vpi assertion callback func) (

PLI INT32 reason, /* callback reason */

p_vpi time cb time, /* callback time */

vpiHandle assertion, /* handle to assertion */

p _vpi attempt info info, /* attempt related information */

PLI BYTE8 *user_ data /* user data entered upon registration */

)i

vpiHandle vpi register assertion cb(

vpiHandle assertion, /* handle to assertion */

PLI_INT32 reason, /* reason for which callbacks needed */
vpi assertion callback func *cb rtn,

PLI BYTE8 *user data /* user data to be supplied to cb */

)i
typedef struct t vpi assertion step info {
PLI INT32 matched expression count;
vpiHandle *matched exprs; /* array of expressions */
p_vpi source info *exprs source_ info; /* array of source info */
PLI INT32 stateFrom, stateTo;/* identify transition */
} s vpi assertion step info, *p vpi assertion step info;
typedef struct t vpi attempt info {
union {
vpiHandle failExpr;
p _vpi assertion step info step;
} detail;
s _vpi time attemptStartTime; /* Time attempt triggered */
} s vpi attempt info, *p vpi attempt info;

where reason is any of the following.

cbAssertionStart
an assertion attempt has started. For most assertions one attempt starts each and every clock tick.

cbAssertionSuccess
when an assertion attempt reaches a success state.

cbAssertionFailure
when an assertion attempt fails to reach a success state.

cbAssertionStepSucCess
progress one step an attempt. By default, step callbacks are not enabled on any assertions; they are
enabled on a per-assertion/per-attempt basis (see Section 28.5.2), rather than on a per-assertion basis.

cbAssertionStepFailure

failure to progress by one step along an attempt. By default, step callbacks are not enabled on any asser-
tions; they are enabled on a per-assertion/per-attempt basis (see Section 28.5.2), rather than on a per-
assertion basis.

cbAssertionDisable
whenever the assertion is disabled (e.g., as aresult of acontrol action).

cbAssertionEnable
whenever the assertion is enabled.

cbAssertionReset
whenever the assertion is reset.

364 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

cbAssertionkKill
when an attempt is killed (e.g., asaresult of a control action).

These callbacks are specific to a given assertion; placing such a callback on one assertion does not cause the
callback to trigger on an event occurring on a different assertion. If the callback is successfully placed, a han-
dleto the callback isreturned. This handle can be used to remove the callback viavpi _remove cb (). If there
were errors on placing the callback, aNuLL handle is returned. Aswith all other calls, invoking this function
with invalid arguments has unpredictable effects.

Once the callback is placed, the user-supplied function shall be called each time the specified event occurs on
the given assertion. The callback shall continue to be called whenever the event occurs until the callback is
removed.

The callback function shall be supplied the following arguments:
1) thereason for the callback

2) apointer to the time of the callback

3) thehandle for the assertion

4) apointer to an attempt information structure

5) areferenceto the user data supplied when the callback was registered.

The t_vpi attempt info attempt information structure contains details relevant to the specific event that
occurred.

— On disable, enable, reset and kill callbacks, thereturned p vpi_ attempt info info pointer iSNULL
and no attempt information is available.

— On start and success callbacks, only the at temptStartTime field isvalid.

— OnacbassertionFailure calback, the attemptStartTime and detail.failExpr fieldsare
valid.

— On astep callback, the at temptStartTime and detail.step fieldsare valid.

On a step callback, the detail describes the set of expressions matched in satisfying a step along the asser-
tion, along with the corresponding source references. In addition, the step also identifies the source and desti-
nation “states’ needed to uniquely identify the path being taken through the assertion. Sate ids are just
integers, with o identifying the origin state, 1 identifying an accepting state, and any other number represent-
ing some intermediate point in the assertion. It is possible for the number of expressionsin a step to be o
(zero), which represents an unconditional transition. In the case of a failing transition, the information pro-
vided isjust asthat for a successful one, but the last expression in the array represents the expression where the
transition failed.

NOTES

1—In afailing transition, there shall always be at least one element in the expression array.

2—Placing a step callback results in the same callback function being invoked for both success and failure steps.
3—The content of the cb_time field depends on the reason identified by the reason field, as follows:

— cbAssertionStart — cb_time isthetime when the assertion attempt has been started.

— cbAssertionSuccess, cbAssertionFailure — cb_time iSthe time when the assertion suc-
ceeded/failed.

Copyright 2004 Accellera. All rights reserved. 365

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

— cbAssertionStepSuccess, cbAssertionStepFailure — cb_time iSthe time when the asser-
tion attempt step succeeded/failed.

— cbAssertionDisable, cbAssertionEnable, cbAssertionReset, cbAssertionKill —
cb_time isthetime when the assertion attempt was disabled/enabled/reset/killed.

4—In contrast to cb_time, the content of attemptStartTime is aways the start time of the actual attempt of an
assertion. It can be used as an unique 1D that distinguishes the attempts of any given assertion.

28.5 Control functions

This section defines how to obtain assertion system control and assertion control information.

28.5.1 Assertion system control

Usevpi_ control (), with one of the following operators and no other arguments, to obtain assertion system
control information.
Usage example: vpi_control (vpiAssertionSysReset)

vpiAssertionSysReset

discards all attemptsin progress for all assertions and restore the entire assertion system to itsinitial state.
Any pre-existing vpiAssertionStepSuccess and vpiAssertionStepFailure callbacks shall be
removed; all other assertion callbacks shall remain.

Usage example: vpi control (vpiAssertionSysStop)
vpiAssertionSysStop
considers al attempts in progress as unterminated and disable any further assertions from being started.
This control has no effect on pre-existing assertion callbacks.

Usage example: vpi control (vpiAssertionSysStart)

vpiAssertionSysStart
restarts the assertion system after it was stopped (e.g., due to vpiAssertionSysStop). Once started,
attempts shall resume on all assertions. This control has no effect on prior assertion callbacks.

Usage example: vpi_control (vpiAssertionSysEnd)

vpiAssertionSysEnd

discard all attempts in progress and disables any further assertions from starting. All assertion callbacks
currently installed shall be removed. Note that once this control is issued, no further assertion related
actions shall be permitted.

28.5.2 Assertion control

Usevpi_control (), with one of the following operators, to obtain assertion control information.

— For the following operators, the second argument shall be avalid assertion handle.

Usage example: vpi_control (vpiAssertionReset, assertionHandle)

vpiAssertionReset

discards all current attempts in progress for this assertion and resets this assertion to itsinitia state.
Usage example: vpi_control (vpiAssertionDisable, assertionHandle)

vpiAssertionDisable
disables the starting of any new attempts for this assertion. This has no effect on any existing attempts. or
if the assertion already disabled. By default, all assertions are enabled.

366 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Usage example: vpi_control (vpiAssertionEnable, assertionHandle)

vpiAssertionEnable
enables starting new attempts for this assertion. This has no effect if assertion already enabled or on any
existing attempts.

— For the following operators, the second argument shall be a valid assertion handle and the third argument
shall be an attempt start-time (as a pointer to a correctly initialized s_vpi time structure).

Usage example: vpi_control (vpiAssertionKill, assertionHandle, attemptStartTime)

vpiAssertionKill
discards the given attempts, but leaves the assertion enabled and does not reset any state used by this
assertion (e.g., past () sampling).

Usage example: vpi_control (vpiAssertionDisableStep, assertionHandle,
attemptStartTime)

vpiAssertionDisableStep
disables step callbacks for this assertion. This has no effect if stepping not enabled or it is aready dis-
abled.

— For the following operator, the second argument shall be a valid assertion handle, the third argument shall
be an attempt start-time (as a pointer to a correctly initialized s_vpi time structure) and the fourth argu-
ment shall be a step control constant.

Usage example: vpi_control (vpiAssertionEnableStep, assertionHandle,
attemptStartTime, vpiAssertionClockSteps)

vpiAssertionEnableStep

enables step callbacks to occur for this assertion attempt. By default, stepping is disabled for all asser-
tions. Thiscall has no effect if stepping is already enabled for this assertion and attempt, other than possi-
bly changing the stepping mode for the attempt if the attempt has not occurred yet. The stepping mode of
any particular attempt cannot be modified after the assertion attempt in question has started.

NOTE—In this release, the only step control constant available is vpiAssertionClockSteps, indicating callbacks
on a per assertion/clock-tick basis. The assertion clock is the event expression supplied as the clocking expression to the
assertion declaration. The assertion shall “advance” whenever this event occurs and, when stepping is enabled, such events
shall also cause step callbacks to occur.

Copyright 2004 Accellera. All rights reserved. 367

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Section 29
SystemVerilog Coverage API

29.1 Requirements

This chapter defines the Coverage Application Programming Interface (API) in SystemVerilog.

29.1.1 SystemVerilog API

The following criteria are used within this API.

1) This APl shall be similar for all coverages
There are a wide number of coverage types available, with possibly different sets offered by different
vendors. Maintaining a common interface across al the different types enhances portability and ease of
use.

2) At aminimum, the following types of coverage shall be supported:
a) statement coverage
b) toggle coverage
c¢) fsmcoverage
i) fsm states
ii) fsmtransitions
C) assertion coverage

3) Coverage APIsshall be extensible in atransparent manner, i.e., adding a new coverage type shall not break
any existing coverage usage.

4) This APl shall provide means to obtain coverage information from specific sub-hierarchies of the design
without requiring the user to enumerate all instances in those hierarchies.

29.1.2 Naming conventions

All elements added by this interface shall conform to the Verilog Procedural Interface (VPI) interface naming
conventions.

— All names are prefixed by vpi.

— All type names shall start with vpi, followed by initially capitalized words with no separators, e.g.,

vpiCoverageStmt.

— All callback names shall start with cb, followed by initially capitalized words with no separators, e.g.,

cbAssertionStart.

— All function names shall start with vpi_, followed by all lowercase words separated by underscores (),
e.0., vpi_control ().

29.1.3 Nomenclature

The following terms are used in this standard.

Satement coverage — whether a statement has been executed or not, where statement is anything defined
as a statement in the LRM. Covered means it executed at |east once. Some implementations also permit

368 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001

SystemVerilog 3.1a

querying the execution count. The granularity of statement coverage can be per-statement or per-state-
ment block (however defined).

FSM coverage — the number of statesin afinite state machine (FSM) that this simulation reached. This
standard does not require FSM automatic extraction, but a standard mechanism to force specific extrac-
tion isavailable via pragmas.

Toggle coverage — for each bit of every signal (wire and register), whether that bit has both a 0 value and
a 1 vaue. Full coverage means both are seen; otherwise, some implementations can query for partial

coverage. Some implementations also permit querying the toggle count of each bit.

Assertion coverage — for each assertion, whether it has had at least one success. | mplementations permit
querying for further details, such as attempt counts, success counts, failure counts and failure coverage.

These terms define the “ primitives” for each coverage type. Over instances or blocks, the coverage number is
merely the sum of all contained primitivesin that instance or block.

29.2 SystemVerilog real-time coverage access

This section describes the mechanisms in SystemVerilog through which SystemVerilog code can query and
control coverage information. Coverage information is provided to SystemVerilog by means of a number of
built-in system functions (described in Section 29.2.2) using a number of predefined constants (described in

Section 29.2.1) to describe the types of coverage and the control actions to be performed.

29.2.1 Predefined coverage constants in SystemVerilog

The following predefined *defines represent basic real-time coverage capabilities accessible directly from

SystemVerilog.

Coverage control

‘define SV_COV_START
‘define SV_COV_STOP
‘define SV_COV_RESET

‘define

SV_COV_CHECK

w N O

Scope definition (hierarchy traversal/accumulation type)

‘define
‘define

SV_COV_MODULE
SV_COV_HTIER

Coverage typeidentification

‘define
‘define
‘define
‘define

SV_COV_ASSERTION
SV_COV_FSM_STATE
SV_COV_STATEMENT
SV_COV_TOGGLE

Status results

‘define
‘define
‘define
‘define
‘define

SV_COV_OVERFLOW
SV_COV_ERROR
SV_COV_NOCOV
SV_COV_OK
SV_COV_PARTIAL

10
11

20
21
22
23

-2
-1

Copyright 2004 Accellera. All rights reserved.

369

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001

29.2.2 Built-in coverage access system functions

29.2.2.1 $coverage_control
$coverage control (control constant,
coverage type,
scope_def,
modules or instance)

Thisfunction is used to control or query coverage availability in the specified portion of the hierarchy. Thefol-
lowing control options are available:

*SV_COV_START
If possible, starts collecting coverage information in the specified hierarchy. No effect if coverage is
already being collected. Note that coverage is automatically started at the beginning of simulation for all
portions of the hierarchy enabled for coverage.

*SV_COV_STOP
Stops collecting coverage information in the specified hierarchy. No effect if coverage is not being col-
lected.

‘SV_COV_RESET
Resets all available coverage information in the specified hierarchy. No effect if coverage not available.

'SV_COV_CHECK
Checksif coverage information can be obtained from the specified hierarchy. Note the possibility of hav-
ing coverage information does imply that coverage is being collected, as the coverage could have been
stopped.

Thereturn valueisa *define name, with the value indicating the success of the action.

*SV_COV_OK
On acheck operation denotes that coverageisfully availablein the specified hierarchy. For all other oper-
ations, represents successful and complete execution of the desired operation.

‘SV_COV_ERROR
On all operations means that the control operation failed without any effect, typically due to errors in
arguments, such as a non-existing module.

'SV_COV_NOCOV
On a check or start operation, denotes that coverage is not available at any point in the specified hierar-
chy.

‘SV_COV_PARTIAL
On acheck or start operation, denotes that coverage is only partially available in the specified hierarchy.

The table below describes the possible return values for each of the coverage control options:

Table 29-1: Coverage control return values

‘SV_COV_OK ‘SV_COV_ERROR ‘SV_COV_NOCOV | ‘SV_COV_PARTIAL
‘SV_COV_START success bad args no coverage partial coverage
'SV_COV_STOP success bad args - -
'SV_COV_RESET success bad args - -
‘SV_COV_CHECK full coverage bad args no coverage partial coverage

Starting, stopping, or resetting coverage multiple times in succession for the same instance(s) has no further

effect if coverage has already been started, stopped, or reset for that/those instance(s).

370

Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001

SystemVerilog 3.1a

The hierarchy(ies) being controlled or queried are specified as follows.

‘SV_MODULE COV, "unique module def name"
provides coverage of al instances of the given module (the unique module name is a string), excluding
any child instances in the instances of the given module. The module definition name can use special
notation to describe nested module definitions.

‘SV_COV_HIER, "module name"
provides coverage of all instances of the given module, including all the hierarchy below.

‘SV_MODULE_COV, instance name
provides coverage of the one named instance. The instance is specified as a normal Verilog hierarchical

path.

‘SV_COV_HIER, instance name
provides coverage of the named instance, plus all the hierarchy below it.

All the permutations are summarized in Table 29-2.

Table 29-2: Instance coverage permutations

Control/query

“ Definition name”

instance.name

'SV_COV_MODULE

The sum of coverage for al
instances of the named module,
excluding any hierarchy below
those instances.

Coverage for just the named
instance, excluding any hierar-
chy in instances bel ow that
instance.

'SV_COV_HTER

The sum of coverage for al
instances of the named module,
including all coverage for all
hierarchy below those instances.

Coverage for the named instance
and any hierarchy below it.

NOTE—Definition names are represented as strings, whereas instance names are referenced by hierarchical paths. A hier-
archical path need not include any . if the path refers to an instance in the current context (i.e., normal Verilog hierarchical

path rules apply).

Copyright 2004 Accellera. All rights reserved.

371

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

$root

module TestBench
instance tb

module DUT
instance unitl

module component
instance comp

module control
instance ctrl

module DUT
instance unit2

module component
instance comp

module control
instance ctrl

| | module BusWatcher
instance watch

Example 29-1 — Hierarchical instance example

If coverageis enabled on all instances shown in Example 29-1 —, then:

$Scoverage control (*SV_COV_CHECK, ‘SV_COV_TOGGLE, ‘SV_COV_HIER, S$root)
checks all instances to verify they have coverage and, in this case, returns *sv_cov_Ox.

$coverage control (*SV_COV_RESET, ‘'SV_COV_TOGGLE, ‘SV_COV_MODULE, "DUT")
resets coverage collection on both instances of the DUT, specificaly, $root.tb.unitl and
$root .tb.unit2, but leaves coverage unaffected in all other instances.

$coverage control (‘SV_COV_RESET, ‘SV_COV_TOGGLE, ‘SV_COV_MODULE,
Sroot.tb.unitl)
resets coverage of only theinstance $root . tb.unit1, leaving all other instances unaffected.

$coverage control (*SV_COV_STOP, ‘SV_COV_TOGGLE, ‘'SV_COV_HIER,

Sroot.tb.unitl)
resets coverage of the instance $root . tb.unit1 and also reset coverage for al instances below it, spe-
dﬂca”y$root.tb.unit1.compand$root.tb.unit1.ctrL

$coverage control (‘SV_COV_START, ‘'SV_COV_TOGGLE, ‘'SV_COV_HIER, "DUT")
starts coverage on all instances of the module DUT and of all hierarchy(ies) below those instances. In this

372 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

design, coverage is darted for the instances $root.tb.unitl, $root.tb.unitl.comp,
$root.tb.unit1.ctr1,$root.tb.unit2,$root.tb.unit2.comp,and$root.tb.unit2.ctrL

29.2.2.2 $coverage_get_max
$coverage get max(coverage type, scope def, modules or instance)

This function obtains the value representing 100% coverage for the specified coverage type over the specified
portion of the hierarchy. This value shall remain constant across the duration of the simulation.

NOTE—This vaue is proportional to the design size and structure, so it also needs to be constant through multiple inde-
pendent simulations and compilations of the same design, assuming any compilation options do not modify the coverage
support or design structure.

The return value is an integer, with the following meanings.

-2 ('SV_COV_OVERFLOW)
the value exceeds a number that can be represented as an integer.

-1 ('SV_COV_ERROR)
an error occurred (typically dueto using incorrect arguments).

0 ('SV_COV_NOCOV)
no coverage is available for that coverage type on that/those hierarchy(ies).

+pOS_num
the maximum coverage number (where pos num > 0), which is the sum of all coverable items of that
type over the given hierarchy(ies).

The scope of thisfunction is specified as per $coverage control (See Section 29.2.2.1).

29.2.2.3 $coverage_get

Scoverage get (coverage type, scope def, modules or instance)
This function obtains the current coverage value for the given coverage type over the given portion of the hier-
archy. This number can be converted to a coverage percentage by use of the equation:

coverage_get()
coverage get max()

*100

cov erage% =

Thereturn value follows the same pattern as $coverage get max (See Section 29.2.2.2), but with pos _num
representing the current coverage level, i.e., the number of the coverable items that have been covered in this/
these hierarchy(ies).

The scope of thisfunction is specified as per $coverage control (See Section 29.2.2.1).

The return value is an integer, with the following meanings.

-2 ('SV_COV_OVERFLOW)
the value exceeds a number that can be represented as an integer.

-1 ('SV_COV_ERROR)
an error occurred (typically dueto using incorrect arguments).

0 ('SV_COV_NOCOV)
no coverage is available for that coverage type on that/those hierarchy(ies).

+pos_num
the maximum coverage number (where pos_num > 0), which is the sum of all coverable items of that
type over the given hierarchy(ies).

Copyright 2004 Accellera. All rights reserved. 373

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

29.2.2.4 $coverage_merge
$coverage merge (coverage type, "name")

This function loads and merges coverage data for the specified coverage into the simulator. name is an arbi-
trary string used by the tool, in an implementation-specific way, to locate the appropriate coverage database,
i.e., tools are allowed to store coverage files any place they want with any extension they want as long as the
user can retrieve the information by asking for a specific saved name from that coverage database. If name
does not exist or does not correspond to a coverage database from the same design, an error shall occur. If an
error occurs during loading, the coverage numbers generated by this simulation might not be meaningful.

The return values from this function are:

‘SV_COV_OK
the coverage data has been found and merged.

'SV_COV_NOCOV
the coverage data has been found, but did not contain the coverage type requested.

*SV_COV_ERROR
the coverage data was not found or it did not correspond to this design, or another error.
29.2.2.5 $coverage_save

Scoverage save (coverage type, "name")

This function saves the current state of coverage to the tool’s coverage database and associates it with the
given name. This name will be mapped in an implementation-specific way into some file or set of filesin the
coverage database. Data saved to the database shall be retrieved later by using $coverage merge and sup-
plying the same name. Saving coverage shall not have any effect on the state of coverage in this simulation.

The return values from this function are:
'SV _COV_OK
the coverage data was successfully saved.

'SV_COV_NOCOV
no such coverage is available in this design (nothing was saved).

'SV_COV_ERROR
some error occurred during the save. If an error occurs, the tool shall automatically remove the coverage
database entry for name to preserve the coverage database integrity. It is not an error to overwrite a previ-
ously existing name.

NOTES
1—The coverage database format isimplementation-dependent.

2—Mapping of names to actual directories/files is implementation-dependent. There is no requirement that a coverage
name map to any specific set of files or directories.

29.3 FSM recognition

Coverage tools need to have automatic recognition of many of the common FSM coding idioms in Verilog/
SystemVerilog. This standard does not attempt to describe or require any specific automatic FSM recognition
mechanisms. However, the standard does prescribe a means by which non-automatic FSM extraction occurs.
The presence of any of these standard FSM description additions shall override the tool’s default extraction
mechanism.

I dentification of an FSM consists of identifying the following items:

374 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

1) the state register (or expression)
2) thenext state register (thisis optional)
3) thelega states.

29.3.1 Specifying the signal that holds the current state
Use the following pragmato identify the vector signal that holds the current state of the FSM:
/* tool state vector signal name */

where tool and state vector arerequired keywords. This pragma needs to be specified inside the module
definition where the signal is declared.

Another pragmais also required, to specify an enumeration name for the FSM. This enumeration nameis also

specified for the next state and any possible states, associating them with each other as part of the same FSM.
There are two ways to do this:

— Use the same pragma:

/* tool state vector signal name enum enumeration name */

— Use aseparate pragmain the signal’s declaration:

/* tool state vector signal name */
reg [7:0] /* tool enum enumeration name */ signal name;

In either case, enum isarequired keyword; if using a separate pragma, tool isalso arequired keyword and the
pragma needs to be specified immediately after the bit-range of the signal.

29.3.2 Specifying the part-select that holds the current state

A part-select of avector signal can be used to hold the current state of the FSM. When a coverage tool displays
or reports FSM coverage data, it names the FSM after the signal that holds the current state. If a part-select
holds the current state in the user’s FSM, the user needs to also specify a name for the FSM for the coverage
tool to use. The FSM name is not the same as the enumeration name.

Specify the part-select by using the following pragma:

/* tool state vector signal name[n:n] FSM name enum enumeration name */

29.3.3 Specifying the concatenation that holds the current state

Like specifying a part-sel ect, a concatenation of signals can be specified to hold the current state (when includ-
ing an FSM name and an enumeration name):

/* tool state vector {signal name , signal name, ...} FSM name enum
enumeration name */

The concatenation is composed of all the signals specified. Bit-selects or part-selects of signals cannot be used
in the concatenation.

29.3.4 Specifying the signal that holds the next state

The signal that holds the next state of the FSM can also be specified with the pragmathat specifies the enumer-
ation name:

reg [7:0] /* tool enum enumeration name */

Copyright 2004 Accellera. All rights reserved. 375

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

signal name

This pragma can be omitted if, and only if, the FSM does not have a signal for the next state.

29.3.5 Specifying the current and next state signals in the same declaration

Thetool assumesthe first signal following the pragma holds the current state and the next signal holds the next
state when a pragma.is used for specifying the enumeration name in a declaration of multiple signals, e.g.,

/* tool state vector cs */
reg [1:0] /* tool enum myFSM */ cs, ns, nonstate;

In this example, the tool assumes signal cs holds the current state and signal ns holds the next state. It assumes
nothing about signal nonstate.

29.3.6 Specifying the possible states of the FSM
The possible states of the FSM can also be specified with a pragma that includes the enumeration name;

parameter /* tool enum enumeration_name */

S0 = 0,
sl =1,
s2 = 2,
s3 = 3;

Put this pragma immediately after the keyword parameter, unless a bit-width for the parameters is used, in
which case, specify the pragmaimmediately after the bit-width:

parameter [1:0] /* tool enum enumeration name */

S0 = 0,
sl =1,
s2 = 2,
s3 = 3;

29.3.7 Pragmas in one-line comments

These pragmas work in both block comments, between the /* and */ character strings, and one-line com-
ments, following the // character string, e.g.,

parameter [1:0] // tool enum enumeration name

S0 = 0,
sl = 1,
s2 = 2,
s3 = 3;

376 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001

29.3.8 Example

SystemVerilog 3.1a

module m3;

// tool state vector cs enum MY FSM

parameter // tool enum MY FSM
pl=10,

the FSM
endmodule // m3

Signal ns holdsthe next state

reg[31:0] cs;

reg[31:0] /* tool enum MY FSM */ ns;

reg[31:0] clk;

reg[31:0] rst; Signal cs holdsthe current state

p2=11, .
p3=12; \pl,pzmd p3 are possible states of

Example 29-2 — FSM specified with pragmas

29.4 VPI coverage extensions
29.4.1 VPI entity/relation diagrams related to coverage

29.4.2 Extensions to VPl enumerations

— Coverage control

#define vpiCoverageStart
#define vpiCoverageStop
#define vpiCoverageReset
#tdefine vpiCoverageCheck
#define vpiCoverageMerge
#define vpiCoverageSave

— VP properties
1) Coverage type properties

#tdefine vpiAssertCoverage
#define vpiFsmStateCoverage
#define vpiStatementCoverage
#define vpiToggleCoverage

2) Coverage status properties

#define vpiCovered
#tdefine vpiCoverMax
#define vpiCoveredCount

3) Assertion-specific coverage status properties

#idefine vpiAssertAttemptCovered
#define vpiAssertSuccessCovered
#idefine vpiAssertFailureCovered

4) FSM-specific methods

Copyright 2004 Accellera. All rights reserved.

377

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

#tdefine vpiFsmStates
#idefine vpiFsmStateExpression
— FSM handle types (vpi types)

#define vpiFsm
#define vpiFsmHandle

29.4.3 Obtaining coverage information

To obtain coverage information, the vpi get () function is extended with additional VPI properties that can
be obtained from existing handles:

vpi get (<coverageType>, instance handle)

Returns the number of covered items of the given coverage type in the given instance. Coverage type is one of
the coverage type properties described in Section 29.4.2. For example, given coverage type vpiStatement -
Coverage, this cal would return the number of covered statements in the instance pointed by
instance_handle.

vpi get (vpiCovered, assertion handle)
vpi get (vpiCovered, statement handle)
vpi get (vpiCovered, signal handle)
vpi get (vpiCovered, fsm handle)

vpi get (vpiCovered, fsm state handle)

Returns whether the item referenced by the handle has been covered. For handles that can contain multiple
coverable entities, such as statement, fsm and signal handles, the return value indicates how many of the enti-
ties have been covered.

— For assertion handle, the coverable entities are assertions
— For statement handle, the entities are statements
— For signal handle, the entities are individual signal bits

— For fsm handle, the entities are fsm states

For assertions, vpicCovered implies that the assertion has been attempted, has succeeded at least once and has
never failed. More detailed coverage information can be obtained for assertions by the following queries:

vpi get (vpiAssertAttemptCovered, assertion handle)
Returns the number of times the assertion has been attempted.

vpi get (vpiAssertSuccessCovered, assertion handle)
Returns the number of times the assertion has succeeded non-vacuously or, if assertion handle correspondsto a
cover sequence, the number of times the sequence has been matched. Refer to Section 17.11.1 and 17.13 for
the definition of vacuity.

vpi get (vpiAssertVacuousSuccessCovered, assertion handle)

Returns the number of times the assertion has succeeded vacuously. Refer to Section 17.11.1 and 17.13 for the
definition of vacuity.

vpi get (vpiAssertFailureCovered, assertion handle)

Returns the number of times the assertion has failed. For any assertion, the number of attempts that have not
yet reached any conclusion (success or failure) can be derived from the formula:

378 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001

in progress = attempts -

The example below illustrates some of these queries:

module covtest;
bit on = 1,
logic clk;

off = 0;

initial begin

clk = 0;
forever begin
#10;
clk = ~clk;
end
end

always @(false) begin
anvr: assert (on ##1 on) ;

end

always @ (posedge clk) begin

(successes + vacuous

SystemVerilog 3.1a

success + failures)

// assertion will not be attempted

aundf: assert (on ##[1:$] off); // assertion will not pass or fail
afail: assert (on ##1 off); // assertion will always fail on 2nd tick
apass: assert (on ##1 on); // assertion will succeed on each attempt
end
endmodule

For this example, the assertions will have the following coverage results:

Table 29-3: Assertion coverage results

vpiCovered vpiAssertAttempt- vpiAssertSuccess- vpiAssertFailure-
Covered Covered Covered
anvr fase fase false false
aundf false true false false
afail false true false true
apass true true true false

The number of times an item has been covered can be obtained by the vpicoveredCount property:

vpi get (vpiCoveredCount,
vpi get (vpiCoveredCount,
vpi get (vpiCoveredCount,
vpi get (vpiCoveredCount,
vpi get (vpiCoveredCount,

assertion handle)
statement handle)
signal handle)
fsm _handle)

fsm state handle)

Returns the number of times each coverable entity referred by the handle has been covered. Note that thisis
only easily interpretable when the handle points to a unique coverable item (such as an individual statement);
when handle points to an item containing multiple coverable entities (such as a handle to a block statement
containing a number of statements), the result isthe sum of coverage counts for each of the constituent entities.

vpi get (vpiCoveredMax,
vpi get (vpiCoveredMax,
vpi get (vpiCoveredMax,
vpi get (vpiCoveredMax,
vpi get (vpiCoveredMax,

Copyright 2004 Accellera. All rights reserved.

assertion handle)
statement handle)
signal handle)
fsm handle)

fsm state handle)

379

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Returns the number of coverable entities pointed by the handle. Note that this shall always return 1 (one) when
applied to an assertion or FSM state handle.

vpi iterate(vpiFsm, instance-handle)
Returns an iterator to al FSMsin an instance.
vpi handle (vpiFsmStateExpression, fsm-handle)
Returns the handle to the signal or expression encoding the FSM state.
vpi iterate(vpiFsmStates, fsm-handle)
Returns an iterator to all states of an FSM.
vpi get value(fsm state handle, state-handle)

Returns the value of an FSM state.

29.4.4 Controlling coverage
vpi control (<coverageControl>, <coverageType>, instance handle)
vpi control (<coverageControl>, <coverageType>, assertion handle)

Controls the collection of coverage on the given instance or assertion. Note that statement, toggle and FSM
coverage are not individually controllable (i.e., they are controllable only at the instance level and not on a per
statement/signal/FSM basis). The semantics and behavior are as per the $coverage control system func-
tion (see Section 29.2.2.1). coverageControl is one vpiCoverageStart, vpiCoverageStop, vpiCover-
ageReset Of vpiCoverageCheck, as defined in Section 29.4.2. coverageType is any one of the VPI
coverage type properties (Section 29.4.2)

vpi control (<coverageControl>, <coverageType>, name)
This saves or merges coverage into the current simulation. The semantics and behavior are specified as per the
equivalent system functions $coverage merge (see Section29.2.2.4) and $coverage save (See

Section 29.2.2.5). coverageControl is one of vpiCoverageMerge OF vpiCoverageSave, defined in
Section 29.4.2.

380 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Section 30
SystemVerilog Data Read API

30.1 Introduction (informative)

This chapter extends the SystemVerilog VPl with read facilities so that the Verilog Procedural Interface (VPI)
acts as an Application Programming Interface (API) for data access and tool interaction irrespective of
whether the dataisin memory or a persistent form such as a database, and also irrespective of the tool the user
isinteracting with.

SystemVerilog is both a design and verification language consequently its VPI has awealth of design and ver-
ification data access mechanisms. This makes the VPI an ideal vehicle for tool integration in order to replace
arcane, inefficient, and error-prone file-based data exchanges with a new mechanism for tool to tool, and user
to tool interface. Moreover, a single access APl eases the interoperability investments for vendors and users
alike. Reducing interoperability barriers allows vendors to focus on tool implementation. Users, on the other
hand, are able to create integrated design flows from a multitude of best-in-class offerings spanning the realms
of design and verification such as simulators, debuggers, formal, coverage or test bench tools.

30.2 Requirements

SystemVerilog adds several design and verification constructs including:
— C datatypessuch as int, struct, union, and enum.
— Advanced built-in data types such as string.
— User defined data types and corresponding methods.
— Datatypes and facilities that enhance the creation and functionality of testbenches.

The access API shall be implemented by all tools as a minima set for a standard means for user-tool or tool-
tool interaction that involves SystemVerilog object data querying (reading). In other words, there is no need for
asimulator to be running for this API to bein effect; it isaset of API routines that can be used for any interac-
tion for example between a user and a waveform tool to read the data stored in its database. This usage flow is
shown in the figure below.

{ Read SystemVerilog
/ VPl |<—
User
Application
— Read

Figure 30-2 — Data read VPl usage model

The focus in the APl is the user view of access. While the API does provide varied facilities to give the user
the ability to effectively architect his or her application, it does not address the tool level efficiency concerns
such as time-based incremental load of the data, and/or predicting or learning the user access. It is |eft up to
implementers to make this as easy and seamless as possible on the user. To make this easy on tools, the API
provides an initialization routine where the user specifies access type and design scope. The user should be pri-

Copyright 2004 Accellera. All rights reserved. 381

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

marily concerned with the API specified here, and efficiency issues are dealt with behind the scenes.

30.3 Extensions to VPl enumerations

These extensions shall be appended to the contents of the vpi _user.h file, described in IEEE Std. 1364-
2001, Annex G. The numbersin the range 800 - 899 are reserved for the read data access portion of the VPI.

30.3.1 Object types

All objectsin VPI have avpiType. This APl adds a new object type for data traversal, and two other objects
types for object collection and traverse object collection.

/* vpiHandl e type for the data traverse object */

#define vpiTrvsObj 800 /* usein vpi_handle() */
#define vpiCollection 810 /* Collection of VPI handles */
#define vpiObjCollection 811 /* Collection of traversable

design objs */
#define vpiTrvsCollection 812 /* Collection of vpiTrvsObj’s */

The other object types that this API references, for example to get a value at a specific time, are al the valid
typesin the VPI that can be used as argumentsin the VPI routines for logic and strength value processing such
asvpi_get value(<object handle>, <value pointers). Thesetypesinclude:

— Constants

— Netsand net arrays
— Regsand reg arrays
— Variables

— Memory

— Parameters

— Primitives

— Assertions

In other words, any limitation in vpiType Of vpi_get value () shall aso be reflected in this data access
API.

30.3.2 Object properties
This section lists the object property VPI calls.

30.3.2.1 Static info

* Check */
[* useinvpi_get() */
#define vpil sLoaded 820 /* isloaded */
#define vpiHasDatav C 821 /* has at least one VC

at some point in time

in the database */
#define vpiHasVC 822 [* has VC at specific

time */
#define vpiHasNoValue 823 /* has no value at

specific time */
#define vpiBelong 824 /* belong to extension */

382 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
/* Access*/
#define vpiAccessLimitedinteractive 830 /* interactive */
#define vpiAccesslnteractive 831 /* interactive: history */
#define vpiAccessPostProcess 832 /* database */
/* Member of acollection */
#define vpiMember 840 /* useinvpi_iterate() */
[* Iteration on instances for loaded */
#define vpiDatal oaded 850 /* useinvpi_iterate() */

30.3.2.2 Dynamic info

30.3.2.2.1 Control constants
[* Control Traverse: usein vpi_goto() for avpiTrvsObj type */

#define vpiMinTime 860 /* mintime */
#define vpiMaxTime 864 /* max time */
#define vpiPrevVC 868
#define vpiNextVC 870
#define vpiTime 874 [* time jump */

These properties can aso be used in vpi get time() to enhance the access efficiency. The routine
vpi_get time () with atraverse handle argument is extended with the additional ability to get the min, max,
previous VC, and next VC times of the traverse handle; not just the current time of the handle. These same
control constants can then be used for both access and for moving the traverse handle where the context (get or
go to) can distinguish the intent.

30.3.3 System callbacks

The access APl adds no new system callbacks. The reader routines (methods) can be called whenever the user
application has control and wishes to access data.

30.4 VPI object type additions

30.4.1 Traverse object

To access the value changes of an object over time, the notion of a Value Change (VC) traverse handle is
added. A value change traverse object is used to traverse and access value changes not just for the current
value (as calling vpi_get_time() Or vpi_get value () on the object handle would) but for any point in
time: past, present, or future. To create a value change traverse handle the routine vpi_handle () is caled
with avpiTrvsObj vpiType:

vpiHandle object handle; /* design object */
vpiHandle trvsHndl = vpi handle (/*vpiType*/vpiTrvsObj,
/*vpiHandle*/ object handle) ;

A traverse object exists from thetime it is created until its handle isreleased. It is the application’s responsibil-
ity to keep ahandle to the created traverse object, and to release it when it is no longer needed.

30.4.2 VPI collection

In order to read data efficiently, it can be necessary to specify agroup of objects. For example, when traversing
data a user might wish to specify alist of objects to be marked as targets of data traversal. To do this grouping
reguires the notion of a collection. A collection represents a user-defined collection of VPI handles. The col-
lection is an ordered list of VPI handles. The vpiType of acollection handle can be vpicollection, vpi-
ObjCollection, OF vpiTrvsCollection:

Copyright 2004 Accellera. All rights reserved. 383

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

— A collection of typevpicollection isageneral collection of VPI handles of objects of any type.

— Thecollection object of typevpiobjcollection representsacollection of VPI traversable objectsin
the design.

— A vpiTrvsCollection isacollection of traverse objects of type vpiTrvsob].

The usage herein theread API is of either:

— Collections of traversable design objects: Used for examplein vpi_handle () to create traverse han-
diesfor the collection. A collection of traversable design objectsis of type vpiobjCollection (the
elements can be any object type in the design except traverse objects of type vpiTrvsObj).

— Collections of datatraverse objects: Used for examplein vpi_goto () to move the traverse handles of
all the objectsin the collection (al are of type vpiTrvs0Obj). A collection of traverse objectsisa
vpiTrvsCollection.

The collection contains a set of member VPl objects and can take on an arbitrary size. The collection can be
created at any time and existing objects can be added to it. The reader implementation can perform a type
check on the items being added to the collection and generate an error if the item added does not belong to the
alowed vpiType.

The purpose of acollection isto group design objects and permit operating on each element with a single oper-
ation applied to the whole collection group. vpi_iterate (vpiMember, <collection handles) isused
to create a member iterator. vpi_ scan() can then be used to scan the iterator for the elements of the collec-
tion.

A collection object is created with vpi create (). The first call provides NuLL handles to the collection
object and the object to be added. Following calls, which can be performed at any time, provide the collection
handle and a handle to the object for addition. The return argument is a handle to the collection object.

For example:

vpiHandle designCollection;

vpiHandle designObj;

vpiHandle trvsCollection;

vpiHandle trvsObj;

/* Create a collection of design objects */

designCollection = vpi create(vpiObjCollection, NULL, NULL) ;

/* Add design object designObj into it */

designCollection = vpi create(vpiObjCollection, designCollection, designObj) ;

/* Create a collection of traverse objects*/

trvsCollection = vpi create(vpiTrvsCollection, NULL, NULL) ;

/* Add traverse object trvsObj into it */

trvsCollection = vpi create (vpiTrvsCollection, trvsCollection, trvsObj) ;

Sometimes it is necessary to filter a collection and extract a set of handles which meet, or do not meet, a spe-
cific criterion for agiven collection. The function vpi filter () can be used for this purpose in the form of:

vpiHandle colFilterHdl = vpi filter((vpiHandle) colHdl, (PLI_ INT32)
filterType, (PLI_INT32) flag);

The first argument of vpi_filter (), colHdl, shal be the collection on which to apply the filter operation.
The second argument, filter Type can be any vpiType or VPl boolean property. This argument is the criterion
used for filtering the collection members. The third argument, flag, is a boolean value. If set to TRUE,
vpi_filter () shal return a collection of handles which match the criterion indicated by filter Type, if set to
FALSE, vpi_ filter () shal return acollection of handles which do not match the criterion indicated by fil-
terType. The original collection passed as afirst argument remains unchanged.

384 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

A collection object exists from the time it is created until its handle is released. It is the application’s responsi-
bility to keep a handle to the created collection, and to release it when it is no longer needed.

30.4.2.1 Operations on collections

A traverse collection can be obtained (i.e. created) from a design collection using vpi_handle (). The cal
would take on the form of:

vpiHandle objCollection;
/* Obtain a traverse collection from the object collection */
vpi handle (vpiTrvsCollection, objCollection) ;

The usage of this capability is discussed in Section 30.8.7.

Another optional method is defined, which isused in the case the user wishes to directly control the data load,
for loading data of objectsin acollection: vpi load (). This operation loads all the objectsin the collection.
Itisequivalent to performing avpi_load () on every single handle of the object elementsin the collection.

A traversal method is also defined on collections of traverse handles; i.e. collections of type vpiTrvsCol-
lection. Themethod isvpi goto ().

30.5 Object model diagrams

A traverse object of type vpiTrvsObj is related to its parent object; it is a means to access the value data of
said object. An object can have several traverse objects each pointing and moving in a different way along the
value data horizon. Thisis shown graphically in the model diagram below. The traversable classis a represen-
tational grouping consisting of any object that:

— Hasaname

— Cantake on avalue accessible withvpi get value (), the value must be variable over time (i.e.
necessitates creation of atraverse object to access the value over time).

The class includes nets, net arrays, regs, reg arrays, variables, memory, primitive, primitive arrays, concurrent
assertions, and parameters. It also includes part selects of all the design object types that can have part selects.

Copyright 2004 Accellera. All rights reserved. 385

SystemVerilog 3.1a

(instances)

Accellera
Extensionsto Verilog-2001

vpiDataLoaded
traversable | VPiParent ;
- >< trvsobj)
(nets) ->time: trvstime
max time, min time,
< net array next VC, prev VC
vpi_get time()
regs
C = ->vaue
~ ™~ bool: vpiHasNoValue
. fegaray) vpi_get_value()
(variables) -> has value change
bool: vpiHasDataVv C
< memory A bool: vpiHasV C
/ -> control: trvstime
. max time, min time,
< primitive next VC, prevVC
. i_goto
(primitive array) vp_gorel)
-> |sin extension
Goncurrent asserti or} bool: vpiBelong
< parameter)
-> name
str: vpiName

str: vpiFullName

-> trvs loaded

bool: vpilsL oaded

Figure 30-3 — Model diagram of traverse object

A collection object of type vpiobjCollection groups together a set of design objects Obj (of any type). A
traverse collection object of type vpiTrvsCollection groups together a set of traverse objects trvsObj of

type vpiTrvsObj.

386

Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001

/ \
L] — >
| | vleember|
| < objCollection > | |
\ / \
~N e
-> creation, addition
vpi_create()
-> filtering
vpi_filter()
-> |oad, unload
vpi_load()
vpi_unload()
s \
L] =
vpiMember|

| |
| < trvsCollection > |
\ /

—_— .

-> creation, addition
vpi_create()

-> filtering
vpi_filter()

-> control/time: trvstime
max time, min time,
next VC, prev VC
vpi_goto()
vpi_get_time()

SystemVerilog 3.1a

— — — — — — — -

~ =

Figure 30-4 — Model diagram of collection

30.6 Usage extensions to VPI routines

Several VPI routines, that have existed before SystemVerilog, have been extended in usage with the addition
of new object types and/or properties. While the extensions are fairly obvious, they are emphasized here again

to turn the reader’s attention to the extended usage.

Copyright 2004 Accellera. All rights reserved. 387

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

Table 30-1: Usage extensions to Verilog 2001 VPI routines

To Use New Usage

Get tool’s reader version vpi_get vlog_ info() Reader version information

Create an iterator for the loaded vpi_ iterate () Add iteration types vpiData-

objects (using Loaded and vpiMember. Extended

vpi_ iterate (vpiData- with collection handle to create a col-

Loaded, <instances)). lection member element iterator.

Create an iterator for (object or

traverse) collections using

vpi iterate (vpiMember,

<collections).

Obtain atraverse (collection) handle |vpi handle () Add new types vpiTrvsObj and

from an object (collection) handle vpiTrvsCollection.
Extended with collection handle (of
traversable objects) to create a
traverse collection from an object col-
lection.

Obtain a property. vpi_get () Extended with the new check proper-
ties: vpiIsLoaded, vpiHas-
DataVC, vpiHasVC,
vpiHasNoValue, and
vpiBelong.

Get avalue. vpi_get value() Use traverse handle as argument to
get value where handle points.

Get time traverse (collection) handle |vpi get time () Use traverse (collection) handle as

points at. argument to get current time where
handle points. Also, get the traverse
handle min, max, previous VC time,
or next VC time.

Free traverse handle vpi_ free object () Use traverse handle as argument

Free (traverse) collection handle. Use (traverse) collection handle as
argument.

30.7 VPI routines added in SystemVerilog

This section lists al the VPI routines added in SystemVerilog.

388 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Table 30-2: VPI routines

To Use

For the reader extension, initialize read interface by |vpi load extension ()
loading the appropriate reader extension library
(simulator, waveform, or other tool). All VPI rou-
tines defined by the reader extension library shall be
called by indirection through the returned pointer;
only built-in VPI routines can be called directly.

Table 30-3: Reader VPI routines

To Use

Perform any tool cleanup. Close database (if opened | vpi_ close ()
invpiAccessPostProcess Of vpiAccess-
Interactive mode).

Create anew handle: used to vpi_ create ()
- create an object (traverse) collection
- Add a (traverse) object to an existing collection.

Filter acollection and extract a set of handleswhich |vpi filter ()
meet, or do not meet, a specific criterion for agiven
collection.

Move traverse (collection) to min, max, or specific |vpi_ goto ()
time. Return a new traverse (collection) handle con-
taining all the objectsthat have aVVC at that time.

Load data (for asingle design object or acollection) | vpi load ()
onto memory if the user wishes to exercise thislevel
of dataload control.

Initialize load access. vpi load_init ()

Unload data (for asingle design object or acollec- |vpi unload ()
tion) from memory if the user wishesto exercisethis
level of dataload control.

30.8 Reading data

Reading datais performed in 3 steps:
1) A design object must be selected for traverse access from a database (or from memory).

2) Indicate the intent to access data. This is typicaly done by avpi load init () call asa hint from the
user to the tool on which areas of the design are going to be accessed. The tool shall then load the datain
an invisible fashion to the user (for example, either right after the call, or at traverse handle creation, or
usage). Alternatively, if the user wishes he can (also) choose to add a specific vpi_load () cal (thiscan
be done at any point in time) to load, or force the load of,, aspecific object or collection of objects. This can

Copyright 2004 Accellera. All rights reserved. 389

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

be done either instead of, or in addition to, the objects in the scope or collection specified in
vpi_load init()).vpi_unload() can be used by the user to force the tool to unload specific objects.
It should be noted that traverse handle creation shall fail for unloaded objects or collections.

3) Once an object is selected, and marked for load, a traverse object handle can be created and used to
traverse the design objects’ stored data.

4) At this point the object is available for reading. The traverse object permits the data value traversal and
access.

30.8.1 VPI read initialization and load access initialization

Selecting an object isdone in 3 steps:

1) The first step is to initialize the read access with a call to vpi_ load extension () to load the reader
extension and set:

a) Name of the reader library to be used specified as a character string. Thisis either a full pathname to
thislibrary or the single filename (without path information) of this library, assuming a vendor specific
way of defining the location of such a library. The latter method is more portable and therefore
recommended. Neither the full pathname, nor the single filename shall include an extension, the name
of the library must be unique and the appropriate extension for the actual platform should be provided
by the application loading this library More details are in Section 30.10.

b) Name of the database holding the stored data or flush databasein case of vpiAccessPostProcess Of
vpiAccessInteractive respectively; a NULL can be used in case of
vpiAccessLimitedInteractive. Thisisthe logical name of a database, not the name of afilein
the file system. It is implementation dependent whether there is any relationship to an actual on-disk
object and the provided name. See access mode below for more details on the access modes.

¢) Access mode: Thefollowing VPI properties set the mode of access

— vpiAccessLimitedInteractive: Meansthat the access shall be done for the data stored in the tool
memory (e.g. simulator), the history (or future) that the tool storesisimplementation dependent. If the
tool does not store the requested info then the querying routines shall return afail. The database name
argument to vpi_load _extension () inthis mode shall be ignored (even if not NULL).

— vpiAccessInteractive: Meansthat the access shall be doneinteractively. The tool shall then use
the database specified asa“flush” areafor itsdata. This mode is very similar to the vpiAccessLim-
itedInteractive with the additional requirement that all the past history (before current time) shall
be stored (for the specified scope/collection, see the access scope/collection description of

vpi load init().

— vpiAccessPostProcess: Meansthat the access shall be done through the specified database. All
data queries shall return the data stored in the specified database. Data history depends on what is
stored in the database, and can be nothing (i.e. no data).

vpi_load extension () can be called multiple times for different reader interface libraries (coming from
different tools), database specification, and/or read access. A call with vpiAccessInteractive means that
the user is querying the data stored inside the simulator database and uses the VPI routines supported by the
simulator. A call with vpiAccessPostProcess means that the user is accessing the data stored in the data-
base and uses the VVPI services provided by the waveform tool. The application, if accessing several databases
and/or using multiple read API libraries, can use the routine vpi_get (vpiBelong, <vpiHandles) tO
check whether a handle belongs to that database. The call is performed as follows:

reader extension ptr->vpi get (vpiBelong, <vpiHandles);

where reader extension ptr IS the reader library pointer returned by the «cal to

390 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

vpi load extension (). TRUE isreturned if the passed handle belongs to that extension, and FALSE other-
wise. If the application usesthe built-in library (i.e. the one provided by the tool it is running under), thereisno
need to use indirection to call the VPI routines; they can be called directly. An initial call must however be
made to set the access mode, specify the database, and check for error indicated by aNULL return.

vpi close () shall becaledin case of:

— vpiAcessLimitedInteractive to perform any tool cleanup. The validity of VPI handles after this
call isleft up to the particular reader implementation.

— vpiBAccessPostProcess Of vpiAccessInteractive mode to perform any tool cleanup and close
the opened database. Handles obtained before the call tovpi_close () are no longer valid after this
call.

Multiple databases, possibly in different access modes (for example a simulator database opened in vpi-
AccessInteractive and a database opened in vpiAccessPostProcess, Or two different databases
opened in vpiAccessPostProcess) can be accessed at the same time. Section 30.10 shows an example of
how to access multiple databases from multiple read interfaces simultaneously.

2) Next step is to specify the elements that shall be accessed. This is accomplished by calling
vpi_load init () and specifying a scope and/or an item collection. At least one of the two (scope or
collection) needs to be specified. If both are specified then the union of all the object elements forms the
entire set of objects the user can access.

— Access scope: The specified scope handle, and nesting mode govern the scope that access returns. Data
gueries outside this scope (and its sub-scopes as governed by the nesting mode) shall return afail in the
access routines unless the object belongs to access collection described below. It can be used either ina
complementary or in an exclusive fashion to access collection. NULL isto be passed to the collection
when access scope is used in an exclusive fashion.

— Access collection: The specified collection stores the traverse object handles to be loaded. It can be
used either in a complementary or in an exclusive fashion to access scope. NULL is to be passed to the
scope when access collection is used in an exclusive fashion.

vpi_load init () enables access to the objects stored in the database and can be called multiple times. The
load access specification of a call remains valid until the next call is executed. This routine servesto initialize
the tool load access and provides an entry point for the tool to perform data access optimizations.

30.8.2 Object selection for traverse access

In order to select an object for access, the user must first obtain the object handle. This can be done using the
VPI routines (that are supported in the tool being used) for traversing the HDL hierarchy and obtaining an
object handle based on the type of object relationship to another (top) handle.

Any tool that implements this read APl (e.g. waveform tool) shall implement at least a basic subset of the
design navigation VPI routines that shall include vpi_handle by name () to permit the user to get avpi-
Handle from an object name. It isleft up to tool implementation to support additional design navigation rela-
tionships. Therefore, if the application wishes to access similar elements from one database to another, it shall
use the name of the object, and then call vpi_handle by name (), to get the object handle from the relevant
database. Thislevel of indirection is always safe to do when switching the database query context, and shall be
guaranteed to work.

It should be noted that an object's vpiHandle depends on the access mode specified in
vpi_load extension () and the database accessed (identified by the returned extension pointer, see Section
30.10). A handle obtained through a post process access mode (vpiAccessPostProcess) from awaveform
tool for example is not interchangeable in general with a handle obtained through interactive access mode
(vpiAccessLimitedInteractive Of vpiAccessInteractive) from asimulator. Also handles obtained
through post process access mode of different databases are not interchangeable. This is because objects, their
data, and relationships in a stored database could be quite different from those in the simulation model, and

Copyright 2004 Accellera. All rights reserved. 391

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

those in other databases.

30.8.3 Optionally loading objects

Asmentioned earlier, vpi_load init () alowsthetool implementing the reader to load objectsin afashion
that isinvisible to the user. Optionally, if the user chooses to do their own loading at some point in time, then
once the object handle is obtained they can use the VPI dataload routine vpi_1oad () with the object’s vpi -
Handle to load the data for the specific object onto memory. Alternatively, for efficiency considerations,
vpi_load () canbe called with adesign object collection handle of type vpiobjCollection. Thecollection
must have already been created with vpi create () and the (additional) selected object handles added to the
load collection using vpi_create () with the created collection list passed as argument. The object(s) datais
not accessible as of yet to the user’s read queries; atraverse handle must still be created. Thisis presented in
Section 30.8.4.

Note that loading the object means loading the object from a database into memory, or marking it for active use
if itisaready in the memory hierarchy. Object loading is the portion that tool implementers need to look at for
efficiency considerations. Reading the data of an object, if loaded in memory, is a simple consegquence of the
load initialization (vpi_load_init ()) and/or vpi_load () optionaly called by the user. The API does not
specify here any memory hierarchy or caching strategy that governsthe access (load or read) speed. It isleft up
to tool implementation to choose the appropriate scheme. It is recommended that this happens in a fashion
invisible to the user without requiring additional routine calls.

The APl here provides the tool with the chance to prepare itself for data load and access with the
vpi_load init (). With this call, the tool can examine what objects the user wishes to access before the
actual read access is made. The API also provides the user the ability to force loads and unloads but it is rec-
ommended to leave this to the tool unless there is a need for the user application to influence this aspect.

30.8.3.1 Iterating the design for the loaded objects

The user shall be alowed to optionally iterate for the loaded objects in a specific instantiation scope using
vpi_iterate (). Thisshall be accomplished by calling vpi_iterate () with the appropriate reference han-
dle, and using the property vpibataLoaded. Thisis shown below.

a) Iterate all data read loaded objects in the design: use a NULL reference handle (ref h) to
vpi iterate(), €0,

itr = vpi_iterate(vpiDatalLoaded, /* ref h */ NULL);
while (loadedObj = vpi_scan(itr))
/* process loadedObj */

}

b) Iterate al data read loaded objects in an instance: pass the appropriate instance handle as a reference
handleto vpi_iterate(), €g.,

itr = vpi_ iterate(vpiDataloaded, /* ref h */ instanceHandle);
while (loadedObj = vpi_scan(itr))
/* process loadedObj */

}

30.8.3.2 Iterating the object collection for its member objects

The user shall be allowed to iterate for the design objects in a design collection using vpi_iterate () and
vpi_scan (). This shall be accomplished by creating an iterator for the members of the collection and then
usevpi_scan() ontheiterator handle e.g.

vpiHandle var handle; /* some object */
vpiHandle varCollection;/* object collection */
vpiHandle Var; /* object handle */
vpiHandle itr; /* iterator handle */

392 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
/* Create object collection */
varCollection = vpi create(vpiObjCollection, NULL, NULL) ;
/* Add elements to the object collection */

varCollection = vpi create(vpiObjCollection, varCollection, var handle) ;

/* Iterating a collection for its elements */

itr = vpi iterate(vpiMember, varCollection);/* create iterator*/
while (Var = vpi scan(itr)) { /* scan iterator */
/* process Var */

}

30.8.4 Reading an object

The sections above have outlined:

— How to select an object for access, in other words, marking this object as atarget for access. Thisis
where the design navigation VPI is used.

— Howtocal vpi_ load init () asahint on the areasto be accessed, and/or optionally load an object
into memory after obtaining a handle and then either loading objects individually or as a group using
the object collection.

— How to optionally iterate the design scope and the object collection to find the loaded objects if needed.

In this section reading data is discussed. Reading an object’s data means obtaining its value changes. VPI,
before this extension, had allowed a user to query avalue at a specific point in time—namely the current time,
and its access does not require the extra step of giving aload hint or actually loading the object data. This step
is added here because VPI is extended with atemporal access component: The user can ask about all the values
in time (regardless of whether that value is available to a particular tool, or found in memory or a database, the
mechanism is provided) since accessing this value horizon involves alarger memory expense, and possibly a
considerable access time. Let's see now how to access and traverse this value timeline of an object.

To access the value changes of an object over time, a traverse object is used, as introduced earlier in Section
30.4.1. Severa VPI routines are also added to traverse the value changes (using this new handle) back and
forth. Thismechanism is very different from the “iteration” notion of VPl that returns objectsrelated to agiven
object, the traversal here can walk or jJump back and forth on the value change timeline of an object. To create
avalue change traverse handle the routine vpi_handle () must be called in the following manner:

vpiHandle trvsHndl = vpi handle (vpiTrvsObj, object handle);

Note that the user (or tool) application can create more than one value change traverse handle for the same
object, thus providing different views of the value changes. Each value change traverse handle shall have a
means to have an internal index, which is used to point to its “current” time and value change of the place it
points. In fact, the value change traversal can be done by increasing or decreasing thisinternal index. What this
index is, and how its function is performed is left up to tools' implementation; It is only used as a concept for
explanation here.

Once created the traverse handle can point anywhere along the timeling; its initial location is left for tool
implementation. However, if the traverse object has no value changes the handle shall point to the minimum
time (of thetrace), so that callsto vpi_get time () canreturnavalidtime. It isup to the user to call aninitial
vpi_goto () to moveto the desired initial pointing location.

30.8.4.1 Traversing value changes of objects

After getting a traverse vpiHandle, the application can do a forward or backward walk or jump traversal by
using vpi_goto () onavpiTrvsObj object type with the new traverse properties.

Here is a sample code segment for the complete process from handle creation to traversal.

p_vpi extension reader p; /* Pointer to VPI reader extension structure */

Copyright 2004 Accellera. All rights reserved. 393

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001
vpiHandle instanceHandle; /* Some scope object is inside */
vpiHandle var handle; /* Object handle */
vpiHandle vc_trvs hdl; /* Traverse handle */
vpiHandle itr;
p_vpi value value p; /* Value storage */
p_vpi time time p; /* Time storage */
PLI INT32 code; /* return code */
/* Initialize the read interface: Access data from memory */
/* NOTE: Use built-in VPI (e.g. that of simulator application is running

under) */

reader p = vpi load extension (NULL, NULL, vpiAccessLimitedInteractive) ;
if (reader p == NULL) ... ; /* Not successful */

/* Initialize the load: Access data from simulator) memory, for scope
instanceHandle and its subscopes */

/* NOTE: Call marks access for all the objects in the scope */
vpi load init (NULL, instanceHandle, 0);

itr = vpi iterate(vpiVariables, instanceHandle) ;

while (var _handle = vpi_scan(itr)) {
/* Demo how to force the load, this part can be skipped in general */
if (vpi get (vpiIsLoaded, var handle) == 0) { /* not loaded*/
/* Load data: object-based load, one by one */
if (!vpi_load(var_handle)); /* Data not found ! */
break;

}

/*-- End of Demo how to force the load, this part can be skipped in general */
/* Create a traverse handle for read queries */
ve_trvs _hdl = vpi handle (vpiTrvsObj, var_ handle) ;
/* Go to minimum time */
ve_trvs hdl = vpi goto(vpiMinTime, vc_trvs hdl, NULL, NULL) ;
/* Get info at the min time */
time p->type = vpiSimTime;
vpil get time(vc_trvs hdl, time p); /* Minimum time */
vpi printf(...);
vpi get value(vc_trvs_hdl, value p); /* Value */
vpi printf(...);
if (vpi_get (vpiHasDataVC, vc_trvs_hdl)) { /* Have any VCs ? */
for (;;) { /* All the elements in time */
vce_trvs hdl = vpi goto(vpiNextVC, vc_trvs hdl, NULL, &code);
if (!lcode) f{
/* failure (e.g. already at MaxTime or no more VCs) */
break; /* cannot go further */
}
/* Get Max time: Set bits of s vpi time type field */
/* time p->type = vpiMaxTime & vpiSimTime; */
/* vpl get time(vc_trvs hdl, time p); */
time p->type = vpiSimTime;
vpi _get time(vc_trvs_hdl, time_ p); /* Time of vC */
vpi _get value(vc_trvs_hdl, value p); /* VC data */

}
}
/* free handles */
vpi free object(...);

394 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

The code segment above declares an interactive access scheme, where only a limited history of valuesis pro-
vided by the tool (e.g. simulator). It then creates a Value Change (VC) traverse handle associated with an
object whose handle is represented by var _handle but only after vpi_load init () iscalled. It then creates
atraversehandle, ve_trvs_hdl. With thistraverse handle, it first callsvpi goto () to moveto the minimum
time where the value has changed. It moves the handle (internal index) to that time by calling vpi_goto ()

with avpiMinTime argument. It then repeatedly calls vpi goto () with a vpiNextvc to move the internal
index forward repeatedly until there is no value change left. vpi_get time () getsthe actual time where this
VCis, and dataisobtained by vpi get wvalue (). The application can also chooseto cal vpi_goto () with
atime p argument to automatically get the VC time instead of calling vpi_get time () Separately to get
thisinformation.

The traverse and collection handles can be freed when they are no longer needed using vpi_free object ().

30.8.4.2 Jump Behavior

Jump behavior refers to the behavior of vpi goto () with avpiTime control constant, vpiTrvsObj type,
and ajump time argument. The user specifies atime to which he or she would like the traverse handle to jump,
but the specified time might or might not have value changes. In that case, the traverse handle shall point to the
latest VC equal to or less than the time requested.

In the example below, the whole simulation run is from time 10 to time 65, and a variable has value changes at
time 10, 15 and 50. If a value change traverse handle is associated with this variable and a jump to a different
timeis attempted, the result shall be determined as follows:

— Jump to 12; traverse handle return timeis 10.
— Jump to 15; traverse handle return timeis 15.
— Jump to 65; traverse handle return timeis 50.
— Jump to 30; traverse handle return timeis 15.
— Jump to O; traverse handle return timeis 10.

— Jump to 50; traverse handle return timeis 50.

If the jump time has a value change, then the internal index of the traverse handle shall point to that time.
Therefore, the return time is exactly the same as the jJump time.

If the jump time does not have a value change, and if the jump time is not less than the minimum time of the
whole trace? run, then the return time is aligned backward. If the jJump time is less than the minimum time,
then the return time shall be the minimum time. In case the object has hold value semantics between the VCs
such as static variables, then the return of vpi_goto () (with a specified time argument to jump to) is a new
handle pointing to that time to indicate success. In case the time is greater than the trace maximum time, or
when an automatic object or an assertion or any other object that does not hold its value between the V Cs then
the return code should indicate failure (and the backward time alignment is still performed). In other words the
time returned by the traverse object shall never exceed the trace maximum; the maximum point in the trace is
not marked as a VC unless there is truly a value change at that point in time (see the example in this subsec-
tion).

30.8.4.3 Dump off regions

When accessing a database, it is likely that there are gaps along the value time-line where possibly the data
recording (e.g. dumping from simulator) was turned off. In this case the starting point of that interval shall be
marked as a VC if the object had a stored value before that time. vpi_goto (), whether used to jump to that
time or using next VC or previous VC traversal from apoint before or after respectively, shall stop at that VC.
Calling vpi_get_value () on the traverse object pointing to that VC shall have no effect on the value argu-

2 The word trace can be replaced by “simulation”; trace is used here for generality since adump file can be
generated by several toals.

Copyright 2004 Accellera. All rights reserved. 395

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001

ment passed; the time argument shall be filled with thetime at that VC. vpi_get () can be called in the form:
vpi_get (vpiHasNovalue, <traverse handles) toreturn TRUE if the traverse handle has no value (i.e.
pointing to the start of a dump off region) and FALSE otherwise.

Thereis, of course, another VV C (from no recorded value to an actual recorded value) at the end of the dump off
interval, if the end exists i.e. there is additional dumping performed and data for this object exists before the
end of the trace. There are no V Csin between the two marking the beginning and end (if they exist); amove to
the next VC from the start point leads to the end point.

30.8.5 Sample code using object (and traverse) collections

396

p_vpi extension reader; /* Pointer to reader VPI library */
vpiHandle scope; /* Some scope being looked at */
vpiHandle var handle; /* Object handle */
vpiHandle some net; /* Handle of some net */
vpiHandle some reg; /* Handle of some reg */
vpiHandle vc_trvs hdll; /* Traverse handle */
vpiHandle vc_trvs hdl2; /* Traverse handle */
vpiHandle itr; /* Iterator */
vpiHandle objCollection; /* Object collection */
vpiHandle trvsCollection; /* Traverse collection */
PLI BYTE8 *data = “my_database”;/* database */
p_vpi time time p; /* time */
PLI INT32 code; /* Return code */

/* Initialize the read interface: Post process mode, read from a database */
/* NOTE: Uses “toolX” library */
reader p = vpi load extension(“toolX”, data, vpiAccessPostProcess) ;

if (reader p == NULL) ... ; /* Not successful */

/* Get the scope using its name */

scope = reader p->vpi handle by name(“top.ml.sl”, NULL);

/* Create object collection */

objCollection = reader p->vpi create(vpiObjCollection, NULL, NULL) ;

/* Add data to collection: All the nets in scope */

/* ASSUMPTION: (waveform) tool “toolX” supports this navigation
relationship */

itr = reader p->vpi iterate(vpiNet, scope) ;

while (var_handle = reader p->vpi scan(itr)) {
objCollection = reader p->vpi create(vpiObjCollection, objCollection,
var handle) ;

}

/* Add data to collection: All the regs in scope */

/* ASSUMPTION: (waveform) tool supports this navigation relationship */

itr = reader p->vpi iterate(vpiReg, scope) ;

while (var _handle = reader p->vpi_scan(itr)) {
objCollection = reader p->vpi create(vpiObjCollection, objCollection,
var handle) ;

}

/* Initialize the load: focus only on the signals in the object collection:
objCollection */
reader p->vpi load init (objCollection, NULL, 0);

/* Demo scanning the object collection */
itr = reader p->vpi iterate (vpiMember, objCollection) ;

Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

while (var_handle = reader p->vpi scan(itr)) {

/* Application code here */

some_net = ...;

time p = ...;

some_reg = ...;

vce_trvs hdll = reader p->vpi handle(vpiTrvsObj, some net) ;
vce_trvs hdl2 = reader p->vpi handle (vpiTrvsObj, some reg) ;

vce_trvs hdll = reader p->vpi goto(vpiTime, vc_trvs hdll, time p, &code);
vce_trvs hdl2 = reader p->vpi goto(vpiTime, vc_trvs hdl2, time p, &code);
/* Data querying and processing here */

/* free handles*/
reader p->vpi free object(...);

/* close database */
reader p->vpi close (0, vpiAccessPostProcess, data);

The code segment above initializes the read interface for post process read access from database data. It then
creates an object collection objcollection then adds to it al the objects in scope of type vpiNet and
vpiReg (assuming this type of navigation is allowed in the tool). Load access is initialized and set to the
objectslisted in objCollection. objCollection can beiterated using vpi_iterate () to createtheitera-
tor and then using vpi_scan () to scan it assuming here that the waveform tool provides this navigation. The
application code is then free to obtain traverse handles for the objects, and perform its querying and data pro-
cessing asit desires.

The code segment below shows a simple code segment that mimics the function of a $dumpvars call to access
data of all the regsin a specific scope and its subscopes and process the data.

p_vpi extension reader p; /* Reader library pointer */

vpiHandle big scope; /* Some scope being looked at */

vpiHandle obj handle; /* Object handle */

vpiHandle obj trvs hdl; /* Traverse handle */

vpiHandle signal iterator; /* Iterator for signals */

p_vpi time time p; /* time */

/* Initialize the read interface: Access data from simulator */

/* NOTE: Use built-in VPI (e.g. that of simulator application is running
under */

reader p = vpi load extension (NULL, NULL, vpiAccessLimitedInteractive);
if (reader p == NULL) ... ; /* Not successful */

/* Initialize the load access: data from (simulator) memory, for scope
big scope and its subscopes */

/* NOTE: Call marks load access */

vpi load init (NULL, big scope, 0);

/* Application code here */
/* Obtain handle for all the regs in scope */

signal iterator = vpi iterate(vpiReg, big scope) ;

/* Data querying and processing here */
while ((obj handle = vpi scan(signal iterator)) != NULL) {

Copyright 2004 Accellera. All rights reserved. 397

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

assert (vpi_get (vpiType, obj handle) == vpiReg) ;
/* Create a traverse handle for read queries */
obj trvs hdl = vpi handle (vpiTrvsObj, obj handle) ;
time p = ...; /* some time */
obj trvs hdl = vpi goto(vpiTime, obj trvs hdl, time p, &code) ;
/* Get info at time */
vpi get value(obj trvs hdl, value p); /* Value */
vpi printf(™....");

}

/* free handles*/

vpi free object(...);

30.8.6 Object-based traversal

Object based traversal can be performed by creating a traverse handle for the object and then moving it back
and forth to the next or previous Value Change (VV C) or by performing jumpsin time. A traverse object handle
for any object in the design can be obtained by calling vpi_handle () withavpiTrvsobj type, and an object
vpiHandle. Thisisthe method described in Section 30.8.4, and used in all the code examples thus far.

Using this method, the traversal would be object-based because the individual object traverse handles are cre-
ated, and then the application can query the (value, time) pairs for each VC. This method works well when the
design is being navigated and there is a need to access the (stored) data of any individual object.

30.8.7 Time-ordered traversal

Alternatively, auser might wish to do atime-ordered traversal i.e. atime-based examination of values of sev-
eral objects. This can be done by using a collection. The first step is to create a traverse collection of type
vpiTrvsCollection Of the objects to be traversed from the design object collection of type vpiobjcol-
lection using vpi handle() Wwith a vpiTrvsCollection type and collection handle argument.
vpi_goto () canthen be called on the traverse collection to move to next or previous or do jump in time for
the collection asawhole. A move to next (previous) VC means move to the next (previous) earliest VC among
the objectsin the collection; any traverse handle that does not have any V C isignored; on return its new handle
points to the same place asitsold. A jump to a specific time aigns the new returned handles of al the objects
in the collection (asif this had been done object by object, but hereit is done in one-shot for all elements).

It is possible to loop in time by incrementing the time, and doing a jump to those time increments. This is
shown in the following code snippet.

vpiHandle objCollection = ...;
vpiHandle trvsCollection;

p vpi time time p;

PLI INT32 code;

/* Obtain (create) traverse collection from object collection */
trvsCollection = vpi handle (vpiTrvsCollection, objCollection);
/* Loop in time: increments of 100 units */
for (i = 0; i < 1000; i = i + 100) {
time p = ...;
/* Go to point in time */
trvsCollection = vpi goto(vpiTime, trvsCollection, time p, &code);

}

Alternatively, the user might wish to get anew collection returned of all the objects that have a value change at
the given time the traverse collection was moved to. In this case vpi filter() follows the call to
vpi_goto (). Thelatter returns a new collection with all the new traverse objects, whether they have aVVC or
not. vpi_filter () allows us to filter the members that have a VC at that time. This is shown in the code
snippet that follows.

398 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a
vpiHandle rettrvsCollection; /* Collection for all the objects */
vpiHandle vctrvsCollection; /* collection for the objects with VC */
vpiHandle itr; /* collection member iterator */

/* Go to earliest next VC in the collection */
for (;;) { /* for all collection VCs in time */
rettrvsCollection = vpi goto(vpiNextVC, trvsCollection, NULL, &code) ;
if (!code) {
/* failure (e.g. already at MaxTime or no more VCs) */
break; /* cannot go further */
}
vetrvsCollection = vpi filter (rettrvsCollection, vpiHasVC, 1);
/* create iterator then scan the VC collection */
itr = vpi_ iterate(vpiMember, vctrvsCollection);
while (vc_trvsl hdl = vpi_scan(itr)) {
/* Element has a VC */
vpi get value(vc_trvsl hdl, value p); /* VC data */
/* Do something at this VC point */

30.9 Optionally unloading the data

The implementation tool should handle unloading the unused data in a fashion invisible to the user. Managing
the data caching and memory hierarchy is left to tool implementation but it should be noted that failure to
unload can affect the tool performance and capacity.

The user can optionally choose to call vpi_unload() to unload the data from (active) memory if the user
application is done with accessing the data.

Calling vpi_unload () before releasing (freeing) traverse (collection) handles that are manipulating the data
using vpi_free object () isnot recommended practice by users; the behavior of traversal using existing
handles is not defined here. It is left up to tool implementation to decide how best to handle this. Tools shall,
however, prevent creation of new traverse handles, after the call to vpi_unload (), by returning the appropri-
ate fail codes in the respective creation routines.

30.10 Reading data from multiple databases and/or different read library providers
The VPI routine vpi_load extension () isused to load VPI extensions. Such extensions include reader
libraries from such tools as waveform viewers. vpi_load extension () shal return a pointer to a function
pointer structure with the following definition.

typedef struct {

void *user data; /* Attach user data here if needed */
/* Below this point user application MUST NOT modify any values */
size t struct size; /* Must be set to sizeof (s _vpi extension) */
long struct version; /* Set to 1 for SystemVerilog 3.la */

PLI BYTE8 *extension version;
PLI BYTE8 *extension name;
/* One function pointer for each of the defined VPI routines:
- Each function pointer has to have the correct prototype */

PLI INT32 (*vpi chk error) (error info p);

Copyright 2004 Accellera. All rights reserved. 399

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

PLI INT32 (*vpi vprintf) (PLI_BYTE8 *format, ...);
} s _vpi extension, *p vpi_ extension;

Subsequent versions of the s vpi_extension structure shall only extend it by adding members at the end;
previously existing entries must not be changed, removed, or re-ordered in order to preserve backward com-
patability. The struct_size entry allows users to perform basic sanity checks (e.g. before type casting), and
the struct_version permits keeping track and checking the version of the s vpi extension structure.
The structure also hasauser data field to give users away to attach datato a particular load of an extension
if they wish to do so.

The structure shall have an entry for every VPI routine; the order and synopsis of these entries within the struc-
ture shall exactly match the order and synopsis of function definitions in Chapter 27 of the Verilog Standard,
IEEE Std 1364-2001. After those entries the SystemVerilog VPl routine additions for assertions
vpi_get assertion info() and then vpi register assertion cb() shall be added in that order.
Then all new reader routines defined in Table 30-3 shall be added in exactly the order noted in the table. If a
particular extension does not support a specific VPI routine, then it shall still have an entry (with the correct
prototype), and a dummy body that shall always have a return (consistent with the VPI prototype) to signify
failure (i.e. NULL or FALSE). The routine call must also raise the appropriate VPl error, which can be checked
by vpi chk error (), and/or automatically generate an error message in a manner consistent with the spe-
cific VPI routine.

If tool providers want to add their own implementation extensions, those extensions must only have the effect
of makingthes_vpi extension structurelarger and any non-standard content must occur after al the stan-
dard fields. This permits applications to use the pointer to the extended structure as if it was a
p_vpi_extension pointer, yet still alow the applications to go beyond and access or call tool-specific fields
or routines in the extended structure. For example, atool extended s vpi extension could be:

typedef struct {
/* inline a copy of s _vpi extension */
/* begin */
void *user data;

/* end */
/* “toolZ” extension with one additional routine */
int (*toolZfunc) (int) ;

} s _toolZ extension, *p toolZ extension;

An example of use of the above extended structure is as follows:

p_vpi extension h;
p_toolZ extension hZ;

h = vpi load extension(“toolZ”, <argss>) ;
if (h && (h->struct size >= sizeof(s toolZ extension))
&& ! (strcmp (h->extension version, “...”")
&& !strcmp (h->extension name, “toolZ”)) {
hZ = (p_toolZ extension) h;
/* Can now use hZ to access all the VPI routines, including toolZ’s
‘toolZfunc’ */

}

The SystemVerilog tool the user application is running under is responsible for loading the appropriate exten-
sion, i.e. the reader AP library in the case of the read API. The extension name is used for this purpose, fol-
lowing a specific policy, for example, this extension name can be the name of the library to be loaded. Once
thereader AP library isloaded al VPl function calls that wish to use the implementation in the library shall be
performed using the returned p_vpi extension pointer asan indirection to call the function pointers speci-

400 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

fiedins_vpi_extension or the extended vendor specific structure as described above. Note that, as stated
earlier, in the case the application is using the built-in routine implementation (i.e. the ones provided by the
tool (e.g. simulator) it is running under) then the de-reference through the pointer is not necessary.

Multiple databases can be opened for read simultaneously by the application. After a
vpi load extension () cal, atop scope handle can be created for that database to be used later to derive
any other handles for objects in that database. An example of multiple database access is shown below. In the
example, scopel and scope2 are the top scope handles used to point into databasel and database2
respectively and perform the processing (comparing data in the two databases for example).

p_vpi extension reader pX; /* Pointer to reader libraryfunction struct */
p_vpi extension reader pY; /* Pointer to reader libraryfunction struct */

vpiHandle scopel, scope2; /* Some scope being looked at */
vpiHandle var handle; /* Object handle */
vpiHandle some net; /* Handle of some net */
vpiHandle some reg; /* Handle of some reg */
vpiHandle vc_trvs hdll; /* Traverse handle */
vpiHandle vc_trvs hdl2; /* Traverse handle */
vpiHandle itr; /* Iterator */
vpiHandle objCollectionl, objCollection2; /* Object collection */
vpiHandle trvsCollectionl, trvsCollection2; /* Traverse collection */
p_vpi time time p; /* time */
PLI BYTE8 *datal = “databasel”;

PLI BYTE8 *data2 = “database2”;

/* Initialize the read interface: Post process mode, read from a database */
/* NOTE: Use library from “toolX” */
reader pX = vpi load extension(“toolX”, datal, vpiAccessPostProcess) ;

/* Get the scope using its name */

/* NOTE: scope handle comes from database: datal */
scopel = reader pX->vpi handle by name(“top.ml.sl”, NULL);

/* Initialize the read interface: Post process mode, read from a database */
/* NOTE: Use library from “toolY” */
reader pY = vpi load extension(“toolY”, data2, vpiAccessPostProcess) ;

/* Get the scope using its name */

/* NOTE: scope handle comes from database: data2 */
scope2 = reader pY->vpi handle by name(“top.ml.sl”, NULL);

/* Create object collections */
objCollectionl = reader pX->vpi create(vpiObjCollection, NULL, NULL) ;
objCollection2 = reader pY->vpi create(vpiObjCollection, NULL, NULL) ;

/* Add data to collectionl: All the nets in scopel,
data comes from databasel */
/* ASSUMPTION: (waveform) tool supports this navigation relationship */
itr = reader pX->vpi iterate(vpiNet, scopel) ;
while (var_handle = reader pX->vpi scan(itr)) {
objCollectionl = reader pX->vpi create(vpiObjCollection, objCollectionl,
var handle) ;

}

/* Add data to collection2: All the nets in scope2,
data comes from database2 */
/* ASSUMPTION: (waveform) tool supports this navigation relationship */
itr = reader pY->vpi iterate(vpiNet, scope2) ;
while (var_handle = reader pY->vpi scan(itr)) ({
objCollection2 = reader pY->vpi create(vpiObjCollection, objCollection2,

Copyright 2004 Accellera. All rights reserved. 401

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

var handle) ;

}

/* Initialize the load: focus only on the signals in the object collection:
objCollection */

reader pX->vpi load init (objCollectionl, NULL, O0);

reader pY->vpi load init (objCollection2, NULL, O0);

/* Demo: Scan the object collection */
itr = reader pX->vpi iterate(vpiMember, objCollectionl) ;
while (var_handle = reader pX->vpi_ scan(itr)) ({

}
itr = reader pY->vpi iterate(vpiMember, objCollection2) ;
while (var_handle = reader pY->vpi scan(itr)) ({

}

/* Application code here: Access Objects from databasel or database2 */
some net = ...;

time p = ...;

some_reg = ...;

/* Data querying and processing here */

/* free handles*/
reader pX->vpi free object(...);
reader pY->vpi free object(...);

/* close databases */
reader pX->vpi close(0, vpiAccessPostProcess, datal);
reader pY->vpi close(0, vpiAccessPostProcess, data2);

30.11 VPI routines extended in SystemVerilog

Table 30-1 lists the usage extensions. They are repeated here the additional extended usage with traverse (col-
lection) handles of vpi get time () for clarity.

vpi get time()
Synopsis. Retrieve the time of the object or collection of objects traverse handle.
Syntax: vpi_get time(vpiHandle obj, p vpi time time p)
Returns: PLI_INT32, 1 for success, O for fail.
Arguments:
vpiHandle obj: Handleto atraverse object of type vpiTrvsobj or atraverse collection of
type vpiTrvsCollection.
p_vpi_time time_ p: Pointer to astructure containing the returned time information. There are
several casesto consider:
PLI_INT32type=..;/* vpiScaledRealTime, vpiSimTime, Of vpiSuppressTime */
(time_p == type): Get thetime of traverse object or collection. In case of collection
return time only if al the members have the same time, otherwise time _p is not modified.
(time p == vpiMinTime & type): Getsthe minimum time of traverse object or
collection.
(time_p == vpiMaxTime & type): Getsthe maximum time of traverse object or

402 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a

collection.

(time p == vpiNextVC & type): Getsthetime where traverse handle points next.
Returnsfailureif traverse object or collection has no next VC and time_p isnhot modified. In
the case of acollection, it returns success when any traverse object in the collection has a next
VC, time_p isupdated with the smallest next VC time.

(time_p == vpiPrevVC & type): Getsthetime where traverse handle previously
points. Returns failure if traverse object or collection has no previousVC and time_p isnot
modified. In the case of a collection, it returns success when any traverse object in the
collection has aprevious VC, time_p isupdated with the largest previous VC time.

Related routines; None.

30.12 VPI routines added in SystemVerilog

This section describes the additional VPl routines in detail.

vpi load extension()
Synopsis. Load specified VPI extension. The general form of this function allows for later extensions.

Fort
Synt

he reader-specific form, initialize the reader with access mode, and specify the database if used.
ax: vpi_load extension(PLI_BYTE8 *extension name, ...) initsgenera form
vpi load extension (PLI BYTE8 *extension name,
PLI_BYTE8 *name,
vpiType mode, ...) forthereader extension

Returns: PLI_INT32, 1 for success, O for fail.
Arguments:

PLI BYTE8 *extension name: Extension name of the extension library to be loaded.
In the case of the reader, thisisthe reader VPI library (with the supported navigation
VPI routines).

.: Contains al the additional arguments. For the reader extension these are:

PLI_BYTE8 *name: Database.

vpiType mode:
vpiAccessLimitedInteractive: Accessdatain tool memory, with limited
history. The tool shall at least have the current time value, no history is required.
vpiAccessInteractive: Access datainteractively. Tool shall keep value history up
to the current time.
vpiAccessPostProcess: Access data stored in specified database.

.. .. Additional argumentsiif required by specific reader extensions.

Related routines; None.

30.12.1 VPI reader routines

vpi close()

Synopsis: Close the database if open.

Synt

aX: vpi close(PLI_INT32 tool, vpiType prop, PLI BYTE8* name)

Returns; PLI_INT32, 1 for success, O for fail.
Arguments:

PLI_INT32 tool: 0 forthereader.

vpiType prop:
vpiAccessPostProcess: Access datastored in specified database.
vpiAccessInteractive: Access datainteractively, database isthe flush area. Tool shall
keep value history up to the current time.

PLI_BYTE8* name: Name of the database. This can be the logical name of a database or the

actual name of the data file depending on the tool implementation.

Related routines: None.

Copyright 2004 Accellera. All rights reserved. 403

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

vpi load init()
Synopsis: Initialize the load access to scope and/or collection of objects.
Syntax: vpi_load init (vpiHandle objCollection, vpiHandle scope, PLI_INT32 level)
Returns: PLI_INT32, 1 for success, O for fail.
Arguments:
vpiHandle objCollection: Object collection of typevpiobjcCollection, acollection
of design objects.
vpiHandle scope: Scope of the load.
PLI_INT32 level: If Othen enablesread accessto scope and al its subscopes, 1 meansjust the
scope.
Related routines: None.

vpi load()
Synopsis. Load the data of the given object into memory for data access and traversal if object is an
object handle; load the whole collection (i.e. set of objects) if passed handle is an object collection of type
vpiObjCollection.
Syntax: vpi_ load (vpiHandle h)
Returns; PLI_INT32, 1 for success of loading (all) object(s) (in collection), O for fail of loading (any) object (in
collection).
Arguments:

vpiHandle h:Handleto adesign object (of any valid type) or object collection of

type vpioObjCollection.
Related routines: None

vpi unload()
Synopsis. Unload the given object data from (active) memory if object is an object handle, unload the
whole collection if passed object is a collection of type vpiobjCollection. See Section 30.9 for a
description of data unloading.
Syntax: vpi_unload (vpiHandle h)
Returns: PLI_INT32, 1 for success, O for fail.
Arguments:
vpiHandle h: Handleto an object or collection (of type vpiobjCollection).
Related routines: None.

vpi create()
Synopsis. Create or add to an object or traverse collection.
Syntax: vpi_create (vpiType prop, vpiHandle h, vpiHandle obj)
Returns. vpiHandle of type vpiObjCollection for success, NULL for fail.
Arguments:
vpiType prop:
vpiObjCollection: Create (or add to) object (vpiObjCollection) Or
traverse (vpiTrvsCollection) collection.
vpiHandle h: Handleto a(object) traverse collection of type (vpiobjCollection)
vpiTrvsCollection, NULL for first call (creation)
vpiHandle obj: Handle of object to add, NuLL if for first time creation of collection.
Related routines: None.

vpi goto()

Synopsis. Try to move to min, max or specified time. A new traverse (collection) handle is returned
pointing to the specified time. If the traverse handle (members of collection) has a VC at that time then
the returned handle (members of returned collection) is updated to point to the specified time, otherwiseit
is not updated. If the passed handle has no VC (for collection this means no VC for any object) afail is
indicated, otherwise a success is indicated. In case of a jump to a specified time, and there is no value
change at the specified time, then the value change traverse index of the returned (new) handle (member

404 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

of returned collection) is aligned based on the jump behavior defined in Section 30.8.4.2, and its time
(and the time pointer argument if passed and is non-NULL) shall be updated based on the aligned traverse
point. In the case of vpiNextVvC ofr vpiPrevvc, thetime argument, if passed and is non-NULL (otherwise
it isignored and not updated), is updated if thereisaV C (for collection this meansaV C for any object) to
the new time, otherwise the value is not updated.
Syntax: vpi goto(vpiType prop, vpiHandle obj, p vpi time time p, PLI_ INT32
*ret code)
Returns. vpiHandle of type vpitrvsObj (vpiObjCollection).
Arguments:
vpiType prop:
vpiMinTime: Goto the minimum time of traverse collection handle.
vpiMaxTime: Goto the maximum time of traverse collection handle.
vpiTime: Jump to thetime specifiedin time p.
vpiNextVvc: Goto the (time of) next VC.
vpiPrevvc: Goto the (time of) previous VC.
vpiHandle obj: Handleto atraverse object (collection) of type vpiTrvsObj
(vpiTrvsCollection)
p_vpi time time p: Pointer to astructure containing time information. Used only if prop is
of type vpiTime, otherwiseit isignored.
PLI_INT32 *ret_ code:Pointer to areturn codeindicator. It is 1 for success and O for fail.
Related routines: None.

vpi filter()
Synopsis. Filter ageneral collection, a traversable object collection, or traverse collection according to a
specific criterion. Return a collection of the handles that meet the criterion. Original collection is not
changed.
Syntax: vpi filter (vpiHandle h, PLI INT32 ft, PLI INT32 flag)
Returns. vpiHandle of type vpiObjCollection for success, NULL for fail.
Arguments:
vpiHandle h:Handleto acollection of typevpiCollection, vpiObjCollection OF
vpiTrvsCollection
PLI_INT32 ft: Filter criterion, any vpiType or a VPl boolean property.
PLI_INT32 flag: Flagto indicate whether to match criterion (if set to TRUE), or not (if set to
FALSE).
Related routines: None.

Copyright 2004 Accellera. All rights reserved. 405

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

406 Copyright 2004 Accellera. All rights reserved

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a

Section 31
SystemVerilog VPI Object Model

31.1 Introduction (informative)

SystemVerilog extends the Verilog Procedura Interface (VPI) object diagrams to support SystemVerilog con-
structs. The VPI object diagrams document the properties of objects and the relationships of objects. How
these diagrams illustrate this information is explained in Section 26 of the |IEEE Std. 1364-2001 Verilog stan-
dard. The SystemVerilog extensions to the VPI diagrams are in the form of changes to or additions to the dia-
grams contained in 1364-2001 Verilog standard.

The following table summarizes the changes and additions made to the Verilog VPI object diagrams:

Table 31-4: Verilog VPI object diagram changes and additions

Diagram Notes
Instances New
Interface New
Program New
Module Replaces | EEE 1364.2001 section 26.6.1
Modport New
Interface tf decl New
Ports Replaces | EEE 1364.2001, section 26.6.5
Ref Obj New
Variable Replaces | EEE 1364.2001 section 26.6.8
Var select New
Typespec New
Variable Drivers and Loads New
Instance Arrays Replaces | EEE 1364.2001 section 26.6.2
Scope Replaces | EEE 1364.2001 section 26.6.3
10 Declaration Replaces | EEE 1364.2001 section 26.6.4
Class Object Definition New
Constraint New
Dist Item New
Constraint Expression New
Class Variables New
Structure/Union New
Named Events New
Named Event Array New

Copyright 2004 Accellera. All rights reserved.

SystemVerilog 3.1a

408

Table 31-4: Verilog VPI object diagram changes and additions (continued)

Accellera

Extensionsto Verilog-2001

Diagram

Notes

Task, Function Declaration

Replaces | EEE 1364.2001 section 26.6.18

Alias Statement

New

Frames Replaces | EEE 1364.2001 section 26.6.20
Threads New
Concurrent Assertions New
Disable Condition New
Clocking Event New
Property Declaration New
Property Specification New
Property Expression New
Multiclock Sequence Expression | New
Sequence Declaration New
Sequence Expression New
Instances New
Atomic Statement New

if, if-else Replaces |EEE 1364-2001 section 26.6.35

case Replaces | EEE 1364-2001 section 26.6.36

return New

do while New

waits Replaces wait in |EEE 1364-2001 section 26.6.32
disables Replaces | EEE 1364-2001 section 26.6 38

expect New

foreach New

Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001

31.2 Instance

vpiDefaultClocking

SystemVerilog 3.1a

clocking block)

_

" instance array \4—| ~
ST T T T - instance b= = rg r;m_ _]
oo oo o m - — - | — prog
" package) —>(progrEm aay)
| I _>>(interface]
= o — (_interface - interface array)
o &Xpr vpilndex | | | |
I _>>(task func)
PR — |
I |: __scope)

AN

module
~

-> array member

bool: vpiArray
-> cell

bool: vpiCellinstance
-> default net type

int: vpiDefNetType
-> definition location

int: vpiDefLineNo

str: vpiDefFile
-> definition name

str: vpiDefName
-> delay mode

int: vpiDefDelayMode
-> name

str: vpiName

str: vpiFullName
-> protected

bool: vpiProtected
-> timeprecision

int: vpiTimePrecision
-> timeunit

int: vpiTimeUnit
-> unconnected drive

int: vpiUnconnDrive
-> Configuration

str: vpiLibrary

str: vpiCell

str: vpiConfig
->default lifetime

bool: vpiAutomatic
-> top

bool: vpiTop
compile unit

bool: vpiUnit

vpilnterndlScope

I~ — — — —
—»-p~_ variables)

vpiMemory _ __ __ __ __ __ __
—>>|C array var J|

S-SR
—(reg)
—>>:(reg array):

named event]

—{
- pp-{ Named event arrayj
|
]

parameter j
|

|
—>ﬂ< def param)
—»-»{ param assign)

| |
_>>|< spec param)

- “concurrent”
assertions

Copyright 2004 Accellera. All rights reserved. 409

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

NOTES
1) Top-level instances shall be accessed using vpi_iterate() with aNULL reference object.

1) PassingaNULL handleto vpi_get() with types vpiTimePrecision or
vpiTimeUnit shal return the smallest time precision of all instancesin the design.

2) If aninstanceis an element within an array, the vpilndex transition is used to access the index within the
array. If theinstanceis not part of an array, thistransition shall return NULL.

3) Compilation units are represented as packages that have a vpiUnit property set to TRUE. Such implicitly
declared packages shall have implementation dependent names.

31.3 Interface

—»p(_interface tf decl)
—»p(modport)
—»»(modpath)
——p»»(contassign)

interface

vpilnstance

NOTE

All interfaces are instances and all relations and properties in the Instances diagram also apply.

31.4 Program

vpilnstance

(program e ————»»(_contassign)

NOTE

All programs are instances and all relations and propertiesin the Instances diagram also apply.

410 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

31.5 Module (supersedes IEEE 1364-2001 26.6.1)

—»p(_program array)
program
(modiie a1 g

—pp(interface arra
-> top module (y)

bool: vpiTopModule ——pp interface)

—pp(taskfunc)

vpilnternalScope - — — — — — —~
. _ Sctope
e port)
——Ph net)
NOTES —— netarray)
1) vpiModule will return a module if the object is —»» variables
inside a module instance, otherwise NULL; iMemory __ , — — — — —
) - h) vpiMemory C - a_”alVEF - ;
2) vpilnstance wi ways return the immediate
.) — re
instance (package, module, program or interface) g)
in which the object is instantiated —»(reg array)
3) vpiMemory will return array variable objects ——p)K_named event)
rather than vpiMemory objects. The IEEE 1364 :
committee is currently making a similar update to named event arra@
the Verilog VPI (refer to note 3 in IEEE 1364- —»»~ process j
N~

2001, section2669 | === = = =

——» contassign)
. module)

—>»(module array)

—» modpath)
—(tchk)
—» _ parameter)
—»(_ spec param)
—»»(_ defparam)
—»(_param assign)
—»»(io decl)
—»»(_ aliasstmt)
—»»(_clocking block)

-~ ‘concurrent
assertions

Copyright 2004 Accellera. All rights reserved. 411

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001

31.6 Modport

-> name
str: vpiName

31.7 Interface tf decl

(interface tf decl)

function

]

-> access type
int: vpiAccessType
vipForkJoin
vpiExtern

NOTE

vpilterate(vpiTaskFunc) can return more than one task/function declaration for modport tasks/func-
tions with an access type of vpiForkJoin, because the task or function can be imported from multiple

modul e i nstances.

412 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

31.8 Ports (supersedes IEEE 1364-2001 26.6.5)

vpiHighConn __ . __ __

_________ S 2
(_ instance _ s Toorts . L ‘l
__________ -—refobj /

N s

|vpiParent

| vpiBit

N _- - - =

-> connected by name
bool: vpiConnByName
-> delay (mipd)
vpi_get_delays()
vpi_put_delays()
-> direction
int: vpiDirection
-> explicitly named
bool: vpiExplicitName
-> index
int: vpiPortindex
-> name
str: vpiName
-> port type
int: vpiPortType
-> scalar
bool: vpiScalar
-> size
int: vpiSize
-> vector
bool: vpiVector

NOTES

1)

2)
1)
2)
3)
4)

5)
6)

7)
8)
9

vpiPortType shall be one of the following three types: vpiPort, vpilnterfacePort, and
vpiM odportPort. Port type depends on the formal, not on the actual.

vpi_get_delays, vpi_put_delays delays shall not be applicable for vpilnterfacePort.
vpiHighConn shall indicate the hierarchically higher (closer to the top modul€) port connection.
vpiL owConn shall indicate the lower (further from the top modul€) port connection.

vpiL owConn of avpil nterfacePort shall always be vpiRefOb;j.

Properties scalar and vector shall indicate if the port is 1 bit or more than 1 bit. They shall not
indicate anything about what is connected to the port.

Propertiesindex and name shall not apply for port bits.

If aport is explicitly named, then the explicit name shall be returned. If not, and a name exists, then
that name shall be returned. Otherwise, NULL shall be returned.

vpiPortlndex can be used to determine the port order. The first port has a port index of zero.
vpiHighConn and vpiL owConn shall return NULL if the port is hot connected.

vpiSize for anull port shall return O.

Copyright 2004 Accellera. All rights reserved. 413

Accellera

SystemVerilog 3.1a Extensionsto Verilog-2001
31.9 Ref Obj
ST T T vpiPortlnst T T T T
\ _ ports_)= > _ ports)
vpiLowConn vpiHighConn
-> name
str: vpiName
str: vpiFullName .4>
vpiParent
T T TN
> _scope
— — — 7~
/

- \
“oiAca >
vpiActual interface |
(inerface array)
|
(_modport)

L/ — — — — A

. _hets I
|\.__[Sg____ /I
pf — T T TN\
o variable /I

|

I named event
| |
event array)

~

31.9.1 Examples

These objects are newly defined objects needed for supporting the full connectivity through ports where the
ports are vpilnterface or vpiModport or any object inside modport or interface.

RefObjs are dummy objects and they always have a handle to the original object.
interface simple ()
logic req, gnt;

modport slave (input req, output gnt);
modport master (input gnt, output req) ;

}

module top()
interface simple i;
childl i1(i);

child2 i2(i.master) ;
endmodule

414 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001

/***********************************

for port of i1,

vpiHighConn = vpiRefObj where vpiRefObjType
for port of i2 ,

vpiHighConn = vpiRefObj where vpifullType
**/
module childl (interface simple s)

cl c 1(s);

cl c_2(s.master) ;
endmodule

/****************************

for port of childi,

SystemVerilog 3.1a

vpiInterface

vpiModport

vpilLowConn = vpiRefObj where vpiRefObjType = vpilInterface

for that refObj,

vpiPort is = port of childl.
vpiPortInst is = s, s.master
vpiActual is = 1.

for port of c 1

vpiHighConn is a vpiRefObj, where full type is vpiInterface.

for port of c 2

vpiHighConn is a vpiRefObj, where full type is vpiModport.

Copyright 2004 Accellera. All rights reserved.

415

Accellera
SystemVerilog 3.1a Extensionsto Verilog-2001

31.10 Variables (supersedes IEEE 1364-2001 section 26.6.8)

T T T T vpiPortInst

_ _ ports == > ports)
vpi LowConnt val HighConn

o _ expr_)= 7 _vzyla_blgs_

long int var
(9) vpiDriver -~ — — — — —
(short real var) _ var drivers)

byte var

< module)47 (Y -) vpiLoad o —_— = = —
|(short int var) ———®®_ varloads)

T Gtance 1< int var

\ _In_Sta_nC_e _) 4’»(pl‘lm term)
| - |

(_string var) —»»(_cont assign)

(varbit)
(enum var j »(_pathterm)

ﬁ integer var)| ——»(_tchkterm)

(timevar)
3 type spec >
I(real var j| Lefm
vpiParent VvpiLeftRange T ume
P »(_ structvar) > expr)
vpiParent : iRightRange @~ — — — — —
P union var) vpiRightRange > expr)
vpiParent : | T T T T T
bitvar)
vpi Parent | i |
™ logicvar)
- — — = vpiParent| |
. variables)= array var jo—
— = VpiReg
-> array type —— range
iind | int: vpiArrayType | ip "
vpiinaex \ / VpiFaren
PR S - »»(varselect)
o &Xpr)
-> array member -> array type -> member
bool: vpiArray int: vpiArrayType bool: vpiMember
-> name can be one of vpiStaticArray, vpiDynamicArray, ->value
str: vpiName vpiAssocArray, vpiQueue vpi_get_value()
str: vpiFullName -> lifetime vpi_put_value()
-> sign bool: vpiAutomatic (ref. 26.6.20, 1364 2001) -> scalar
bool: vpiSigned -> constant variable bool: vpiScalar
-> size bool: vpiConstantVariable -> visibility
int: vpiSize -> randomization type int: vpiVisibility
-> determine random availability int: vpiRandType -> vector
bool: vpilsRandomized can be vpiRand, vpiRandC, vpiNotRand bool: vpiVector
NOTES

1) A var sdlect isaword selected from avariable array.

416 Copyright 2004 Accellera. All rights reserved

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

2) The boolean property vpiArray shall be TRUE if the variable handle references an array of variables, and
FALSE otherwise. If the variable is an array, iterate on vpiVar Select to obtain handles to each variable in
the array.

3) To obtain the members of a union and structure, see the relations in Section 31.21

4) The range relation is valid only when vpiArray is true. When applied to array vars this relation returns
only unpacked ranges. When applied to logic and bit variables, it returns only the packed ranges.

5) vpi_handle (vpilndex, var_select_handle) shall return the index of a var select in a 1-dimensional array.
vpi_iterate (vpilndex, var_select handle) shall return the set of indices for a var select in a
multidimensional array, starting with the index for the var select and working outward

6) vpiLeftRange and vpiRightRange shall only apply if vpiMultiArray is not true, i.e. if the array is not
multi-dimensional.

7) A variable handle of type vpiArrayVar represents an unpacked array. The range iterator for array vars
returns only the unpacked ranges for the array.

8) If the variable has an initialization expression, the expression can be obtained from vpi_handle(vpiExpr,
var_handle)

9) vpiSize for a variable array shall return the number of variables in the array. For non-array variables, it
shall return the size of the variable in bits. For unpacked structures and unions the size returned indicates
the number of fields in the structure or union.

10) vpiSize for a var select shall return the number of bits in the var select. This applies only for packed var
select.

11) Variables whose boolean property vpiArray is TRUE do not have a value property.
12) vpiBit iterator applies only for logic, bit, packed struct, and packed union variables.

13) vpi_handle(vpilndex, var_bit_handle) shall return the bit index for the variable hit.
vpi_iterate(vpilndex, var_bit_handle) shall return the set of indices for a multidimensional variable bit
select, starting with the index for the bit and working outwards

14) cbSizeChange will be applicable only for dynamic and associative arrays. If both value and size change,
the size change callback will be invoked first. This callback fires after size change occurs and before any
value changes for that variable. The value in the callback is hew size of the array.

15) The property vpiRandType, returns the current randomization type for the variable, which can be one of
vpiRand, vpiRandC, and vpiNotRand.

16) vpilsRandomized is a property to determine whether a random variable is currently active for
randomization.

17) When the vpiM ember property istrue, it indicatesthat the variableis a member of a parent struct or union
variable. See aso relationsin Section 31.21

18) If avariableisan element of an array, the vpil ndex iterator will return the indexing expressions that select
that specific variable out of the array.

19) Note that:
logic var ==reg
var bit var == reg bit
array var == reg array

20) The properties vpiScalar and vpivector are applicable only to packed struct vars, packed union vars,
bit vars and logic vars. These propertie